2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班).doc
《2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班).doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班).doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班) 時間:120分鐘 總分:150分 一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求) 1. 如果,則下列不等式成立的是 A. B. C. D. 2. 不等式成立的一個充分不必要條件是 A.或 B. C.或 D. 3.拋物線的準(zhǔn)線方程為,則實(shí)數(shù)的值為 A. B. C. D. 4. 已知圓的極坐標(biāo)方程為,則其圓心坐標(biāo)為 A. B. C. D. 5.將的橫坐標(biāo)壓縮為原來的,縱坐標(biāo)伸長為原來的2倍,則曲線的方程變?yōu)椤 ? A. B. C. D. 6.已知是橢圓上任意一點(diǎn),則點(diǎn)到的距離的最大值為 A. B. C. D. 7.已知函數(shù)的導(dǎo)函數(shù)為,且滿足(e),則(e) A. B. C. D. 8. 斜率為且過拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),若, 則實(shí)數(shù) 為 A.3 B.2 C.5 D.4 9. 給出下列四個命題: ①若命題,則; ②若為的極值點(diǎn),則”的逆命題為真命題; ③“平面向量的夾角是鈍角”的一個充分不必要條件是“”; ④命題“,使得”的否定是:“,均有”. 其中正確的個數(shù)是 A.1 B.2 C.3 D.0 10. 設(shè),,,且,則的最小值 A. B. C. D.1 11.設(shè)雙曲線的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),若雙曲線及其漸近線上各存在一點(diǎn),,使得四邊形為矩形,則其離心率為 A. B. C. D.2 12.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實(shí)數(shù)使得,則實(shí)數(shù)的值為 A. B. C. D. 二、填空題(共4小題,每小題5分,共20分) 13.已知雙曲線的左右焦點(diǎn)為,且,則到一漸近線的距離為 . 14.已知函數(shù)+2在上單調(diào)遞增,則的取值范圍是 ?。? 15. 拋物線的焦點(diǎn)為,動點(diǎn)在拋物線上,點(diǎn),當(dāng)取得最大值時,直線的方程為 ?。? 16.若定義域?yàn)榈暮瘮?shù)滿足,則不等式的解集為 (結(jié)果用區(qū)間表示) 三、解答題(共6小題,其中17題10分,其余小題,每題12分,共70分) 17.已知命題p:,不等式恒成立;:方程表示焦點(diǎn)在軸上的橢圓. (1)若為假命題,求實(shí)數(shù)的取值范圍; (2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍. . 18.已知函數(shù). (1)當(dāng)時,求不等式的解集; (2)設(shè)不等式的解集為,若,,求的取值范圍. 19. 在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為. (1)求直線的普通方程與曲線的直角坐標(biāo)方程; (2)若直線與曲線交于,兩點(diǎn),且設(shè)定點(diǎn),求的值. 20. 已知函數(shù). (1)求曲線在點(diǎn)處的切線與軸和軸圍成的三角形面積; (2)若過點(diǎn)可作三條不同直線與曲線相切,求實(shí)數(shù)的取值范圍 21.已知圓的方程為,點(diǎn),點(diǎn)M為圓上的任意一點(diǎn),線段的垂直平分線與線段相交于點(diǎn)N. (1)求點(diǎn)N的軌跡C的方程. (2)已知點(diǎn),過點(diǎn)A且斜率為k的直線交軌跡C于兩點(diǎn),以為鄰邊作平 行四邊形,是否存在常數(shù)k,使得點(diǎn)B在軌跡C上,若存在,求k的值;若不存在,說明 理由. 22. 已知函數(shù). (1)求的單調(diào)區(qū)間; (2)若在上恒成立,求整數(shù)的最大值. 玉山一中xx~xx第二學(xué)期高二期中考試 文科數(shù)學(xué)試卷答案(7--9班) 1、 選擇題(每小題5分,共60分) BACBD ACDAA BC 2、 填空題(每小題5分,共20分) 13. 14. 15. 或 16. 3、 解答題(17題10分,其余各題均為12分) 17.解:(1)若為假命題,則為真命題.若命題真,即對恒成立,則,所以……………………………………………………………..4分 (2)命題:方程表示焦點(diǎn)在軸上的橢圓,或. 為真命題,且為假命題,、一真一假……………………………………6分 ①如果真假,則有,得; ②如果假真,則有,得. 綜上實(shí)數(shù)的取值范圍為或.……………………………………..10分 18.解:(1)時,, 若,時,,解得:,故; 當(dāng)時,,解得:,故, 時,,解得:,故, 綜上,不等式的解集是,;………………………………………………………….6分 (2)若,,則問題轉(zhuǎn)化為在,恒成立, 即,故,…………………………8分 故在,恒成立,即在,恒成立, 故,即的范圍是,.……………………………………………………12分 19解:(1)由消去得,……………………………………3分 由得,即,故直線的普通方程為;曲線的直角坐標(biāo)方程為:.…………………………………6分 (2) 因?yàn)橹本€過,所以可設(shè)直線的參數(shù)方程為并代入圓的方程整理得:,………………………………………….8分 設(shè),對應(yīng)的參數(shù)為,,則,,且……..10分 ………………………………12分 20..解:(1)函數(shù)的導(dǎo)數(shù)為,曲線在點(diǎn)處的切線斜率為1,可得切線方程為即,………………………………2分 切線與軸和軸的交點(diǎn)為,,,可得切線與軸和軸圍成的三角形面積 為;………………………………6分 (2),則,設(shè)切點(diǎn)為,則. 可得過切點(diǎn)處的切線方程為,把點(diǎn)代入得,整理得, 若過點(diǎn)可作三條直線與曲線相切,則方程有三個 不同根.………………………………8分 令,則, 當(dāng),,時,;當(dāng)時,, 則的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為. 可得當(dāng)時,有極大值為;當(dāng)時,有極小值為(2). 由,得.則實(shí)數(shù)的取值范圍是,.…………………12分 21.(1)∵ 知點(diǎn)N的軌跡是以C1、C2為焦點(diǎn)的橢圓 軌跡C:=1…………………………………….4分 (2) 消去y,得 ∴存在常數(shù),使得□OPBQ的頂點(diǎn)B在橢圓上………12分 22解:(1)的定義域是,,,……………1分 ,令,則, 當(dāng)時,,遞減,當(dāng)時,,遞增, (1),,遞減…………………….5分 綜上,在,遞減;………………………….6分 (3) 若恒成立,即令恒成立,即的最小值大于,………………………….7分 ,, 令,則,故在遞增, 又(3),(4),存在唯一的實(shí)數(shù)根,且滿足,,……………………………..9分 故當(dāng)時,,,遞減,當(dāng)時,,,遞增,故(a), 故正整數(shù)的最大值是3.………………..12分- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文重點(diǎn)班 2018 2019 年高 數(shù)學(xué) 下學(xué) 期期 試題 重點(diǎn)
鏈接地址:http://kudomayuko.com/p-4251987.html