《高考數(shù)學復習:第八章 :第六節(jié)雙曲線突破熱點題型》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學復習:第八章 :第六節(jié)雙曲線突破熱點題型(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第六節(jié) 雙 曲 線
考點一
雙曲線的定義、標準方程
[例1] (1)(2013天津高考)已知拋物線y2=8x的準線過雙曲線-=1(a>0,b>0)的一個焦點, 且雙曲線的離心率為2,則該雙曲線的方程為______________.
(2)(2013遼寧高考)已知F為雙曲線C:-=1的左焦點,P,Q為C上的點.若PQ的長等于虛軸長的2倍,點A(5,0)在線段PQ上,則△PQF的周長為________.
[自主解答] (1)由拋物線y2=8x可知其準線方程為x=-2,
所以雙曲線的左焦點為(-2,0),即c=2;[來源:]
又因為離心率為2,所以e==2,故
2、a=1,
由a2+b2=c2知b2=3,
所以該雙曲線的方程為x2-=1.
(2)由-=1,得a=3,b=4,c=5,
所以|PQ|=4b=16>2a,
又因為A(5,0)在線段PQ上,
所以P,Q在雙曲線的一支上,且PQ所在直線過雙曲線的右焦點,由雙曲線定義知:
所以|PF|+|QF|=28.
即△PQF的周長是|PF|+|QF|+|PQ|=28+16=44.
[答案] (1)x2-=1 (2)44
【互動探究】
本例(2)中“若PQ的長等于虛軸長的2倍”改為“若PQ的長等于實軸長的2倍”,則結(jié)果如何?
解:依題意知|PQ|=4a=12>2a.
又∵A(5,0)
3、在線段PQ上,
∴PQ在雙曲線的一支上.
同樣|PF|-|PA|=2a=6,|QF|-|QA|=2a=6.
∴|PF|+|QF|=24.
∴△PQF的周長是|PF|+|QF|+|PQ|=24+12=36.
【方法規(guī)律】
雙曲線定義運用中的兩個注意點
(1)在解決與雙曲線的焦點有關(guān)的距離問題時,通??紤]利用雙曲線的定義;
(2)在運用雙曲線的定義解題時,應特別注意定義中的條件“差的絕對值”,弄清楚是指整條雙曲線還是雙曲線的一支.
1.已知F1,F(xiàn)2為雙曲線C:x2-y2=2的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( )
A.
4、 B. C. D.
解析:選C ∵由雙曲線的定義有
|PF1|-|PF2|=|PF2|=2a=2,
∴|PF1|=2|PF2|=4,
則cos∠F1PF2=
==.
2.已知△ABP的頂點A,B分別為雙曲線-=1的左、右焦點,頂點P在雙曲線上,則的值等于( )
A. B. C. D.
解析:選A 在△ABP中,由正弦定理知
====.
[來源:]
考點二
直線和雙曲線的綜合
[例2] (2013全國高考)已知雙曲線C:-=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2
5、,離心率為3,直線y=2與C的兩個交點間的距離為.
(1)求a,b;
(2)設(shè)過F2的直線l與C的左、右兩支分別交于A,B兩點,且|AF1|=|BF1|,證明:|AF2|,|AB|,|BF2|成等比數(shù)列.
[自主解答] (1)由題設(shè)知=3,即=9,
故b2=8a2.
所以C的方程為8x2-y2=8a2.
將y=2代入上式,解得x= .
由題設(shè)知,2 =,解得a2=1.
所以a=1,b=2.
(2)證明:由(1)知,F(xiàn)1(-3,0),F(xiàn)2(3,0),C的方程為8x2-y2=8.①
由題意可設(shè)l的方程為y=k(x-3),|k|<2,代入①并化簡,得(k2-8)x2-6k2x+9
6、k2+8=0.
設(shè)A(x1,y1),B(x2,y2),則
x1≤-1,x2≥1,x1+x2=,x1x2=.
于是|AF1|===-(3x1+1),
|BF1|===3x2+1.
由|AF1|=|BF1|,得-(3x1+1)=3x2+1,
即x1+x2=-.
故=-,解得k2=,從而x1x2=-.
由于|AF2|===1-3x1,
|BF2|===3x2-1,
故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,[來源:]
|AF2||BF2|=3(x1+x2)-9x1x2-1=16.
從而|AF2||BF2|=|AB|2,
所以|AF2|,|AB|,|BF2
7、|成等比數(shù)列.
【方法規(guī)律】
求解雙曲線綜合問題的主要方法
雙曲線的綜合問題主要為直線與雙曲線的位置關(guān)系.解決這類問題的常用方法是設(shè)出直線方程或雙曲線方程,然后把直線方程和雙曲線方程聯(lián)立成方程組,消元后轉(zhuǎn)化成關(guān)于x(或y)的一元二次方程,利用根與系數(shù)的關(guān)系及整體代入的思想解題.設(shè)直線與雙曲線交于A(x1,y1),B(x2,y2)兩點,直線的斜率為k,則|AB|=|x1-x2|.
過雙曲線-=1的右焦點F2,傾斜角為30的直線交雙曲線于A,B兩點,O為坐標原點,F(xiàn)1為左焦點.
(1)求|AB|;
(2)求△AOB的面積.
解:(1)由雙曲線的方程,得a=,b=,
∴c==3,
8、F1(-3,0),F(xiàn)2(3,0).
直線AB的方程為y=(x-3).
設(shè)A(x1,y1),B(x2,y2),
由得5x2+6x-27=0.
∴x1+x2=-,x1x2=-.
∴|AB|=|x1-x2|
=
= =.
(2)直線AB的方程變形為x-3y-3=0.
∴原點O到直線AB的距離為d==.
∴S△AOB=|AB|d==.
高頻考點
考點三 雙曲線的幾何性質(zhì)及應用
1.雙曲線的幾何性質(zhì)及應用,是高考命題的熱點,多以選擇題或填空題的形式呈現(xiàn),試題難度不大,多為容易題或中檔題.
2.高考對雙曲線幾何性質(zhì)的考查主要有以下幾個命題角度:
(1)求
9、雙曲線的離心率(或范圍);
(2)求雙曲線的漸近線方程;
(3)求雙曲線方程;
(4)求雙曲線的焦點(距)、實虛軸長.
[例3] (1)(2013新課標全國卷Ⅰ)已知雙曲線C:-=1(a>0,b>0)的離心率為,則C的漸近線方程為 ( )
A.y=x B.y=x
C.y=x D.y=x
(2)(2013浙江高考)如圖,F(xiàn)1,F(xiàn)2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形,則C2的離心率是( )
A. B. C.
10、 D.
[自主解答] (1)== ,
所以=,
故所求的雙曲線漸近線方程是y=x.
(2)設(shè)雙曲線C2的實半軸長為a,焦半距為c,|AF1|=m,|AF2|=n,
由題意知c=,
2mn=(m+n)2-(m2+n2)=4,
(m-n)2=m2+n2-2mn=8,2a=|m-n|=2,a=,
則雙曲線C2的離心率e===.
[答案] (1)C (2)D
與雙曲線幾何性質(zhì)有關(guān)問題的常見類型及解題策略
(1)求雙曲線的離心率(或范圍).依據(jù)題設(shè)條件,將問題轉(zhuǎn)化為關(guān)于a,c的等式(或不等式),解方程(或不等式)即可求得.
(2)求雙曲線的漸近線方程.依據(jù)題設(shè)條件,求雙曲
11、線中a,b的值或a與b的比值,進而得出雙曲線的漸近線方程.
(3)求雙曲線方程.依據(jù)題設(shè)條件,求出a,b的值或依據(jù)雙曲線的定義,求雙曲線的方程.
(4)求雙曲線焦點(焦距)、實虛軸的長.依題設(shè)條件及a,b,c之間的關(guān)系求解.
1.(2013湖北高考)已知0<θ<,則雙曲線C1:-=1與C2:-=1的( )
A.實軸長相等 B.虛軸長相等
C.離心率相等 D.焦距相等
解析:選D ∵0<θ<,∴sin θ
12、軸長為2cos θ,虛軸長為2sin θ,焦距為2,離心率為.
2.(2013廣東高考)已知中心在原點的雙曲線C的右焦點為F(3,0),離心率等于,則C的方程是( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:選B 依題意c=3,
又∵e==,∴a=2,
∴b2= c2-a2= 32-22=5,
∴C的方程為-=1.
3.(2013湖南高考)設(shè)F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的兩個焦點,P是C上一點.若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30,則C的離心率為________
13、.
解析:不妨設(shè)點P在雙曲線C的右支上且F1,F(xiàn)2分別為左、右焦點,由雙曲線定義知
|PF1|-|PF2|=2a,①
又|PF1|+|PF2|=6a,②[來源:]
由①②,得|PF1|=4a,|PF2|=2a.
因為c>a,所以2c>2a,
所以在△PF1F2中,∠PF1F2為最小內(nèi)角,
因此∠PF1F2=30.
在△PF1F2中,由余弦定理可知,
|PF2|2=|PF1|2+|F1F2|2-2|PF1||F1F2|cos 30,
即4a2=16a2+4c2-8ac.
所以c2-2ac+3a2=0,
兩邊同除以a2得e2-2e+3=0.
解得e=.
答案:
———
14、———————[課堂歸納——通法領(lǐng)悟]————————————————
1個規(guī)律——等軸雙曲線的離心率及漸近線的關(guān)系
雙曲線為等軸雙曲線?雙曲線的離心率e=?雙曲線的兩條漸近線互相垂直(位置關(guān)系).
2種方法——求雙曲線標準方程的兩種方法
(1)定義法,根據(jù)題目的條件,若滿足定義,求出相應的a,b的值即可求得方程.
(2)待定系數(shù)法
①定值:根據(jù)條件確定相關(guān)參數(shù)
②待定系數(shù)法求雙曲線方程的常用方法
3個關(guān)注點——雙曲線幾何性質(zhì)的關(guān)注點
雙曲線的幾何性質(zhì)可從以下三點關(guān)注:
(1)“六點”:兩焦點、兩頂點、兩虛軸端點;
(2)“四線”:兩對稱軸(實、虛軸)、兩漸近線;
(3)“兩形”:中心、頂點、虛軸端點構(gòu)成的三角形;雙曲線上的一點(不包括頂點)與兩焦點構(gòu)成的三角形.
3個防范——雙曲線問題的三個易混點
(1)區(qū)分雙曲線中的a,b,c大小關(guān)系與橢圓中a,b,c大小關(guān)系,在雙曲線中c2=a2+b2,而在橢圓中a2=b2+c2.
(2)雙曲線的離心率e∈(1,+∞),而橢圓的離心率e∈(0,1).[來源:]
(3)雙曲線-=1(a>0,b>0)的漸近線方程是y=x,-=1(a>0,b>0)的漸近線方程是y=x.