山東省濱州市2019中考數(shù)學(xué) 第六章 圓 第二節(jié) 與圓有關(guān)的位置關(guān)系習(xí)題.doc
《山東省濱州市2019中考數(shù)學(xué) 第六章 圓 第二節(jié) 與圓有關(guān)的位置關(guān)系習(xí)題.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《山東省濱州市2019中考數(shù)學(xué) 第六章 圓 第二節(jié) 與圓有關(guān)的位置關(guān)系習(xí)題.doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二節(jié) 與圓有關(guān)的位置關(guān)系 姓名:________ 班級(jí):________ 用時(shí):______分鐘 1.(xx湘西州中考)已知⊙O的半徑為5 cm,圓心O到直線l的距離為5 cm,則直線l與⊙O的位置關(guān)系為( ) A.相交 B.相切 C.相離 D.無(wú)法確定 2.(2019改編題)設(shè)⊙O的半徑為3,點(diǎn)O到直線l的距離為d,若直線l與⊙O至少有一個(gè)公共點(diǎn),則d應(yīng)滿足的條件是( ) A.d=3 B.d≤3 C.d<3 D.d>3 3.(2019改編題)如圖所示,是一塊三角形的草坪,現(xiàn)要在草坪上建一涼亭供大家休息,要使涼亭到草坪三條邊的距離相等,涼亭的位置應(yīng)選在( ) A.△ABC的三條中線的交點(diǎn) B.△ABC三邊的中垂線的交點(diǎn) C.△ABC三條角平分線的交點(diǎn) D.△ABC三條高所在直線的交點(diǎn) 4.(xx深圳中考)如圖,一把直尺,60的直角三角板和光盤(pán)如圖擺放,A為60角與直尺交點(diǎn),AB=3,則光盤(pán)的直徑是( ) A.3 B.3 C.6 D.6 5.(xx重慶中考A卷)如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD與⊙O相切于點(diǎn)D,過(guò)點(diǎn)B作PD的垂線交PD的延長(zhǎng)線于點(diǎn)C,若⊙O的半徑為4,BC=6,則PA的長(zhǎng)為( ) A.4 B.2 C.3 D.2.5 6.(xx臺(tái)州中考)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上的點(diǎn),過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.若∠A=32,則∠D=________度. 7.(xx連云港中考)如圖,AB是⊙O的弦,點(diǎn)C在過(guò)點(diǎn)B的切線上,且OC⊥OA,OC交AB于點(diǎn)P.已知∠OAB=22,則∠OCB=__________. 8.(xx湖州中考)如圖,已知△ABC的內(nèi)切圓⊙O與BC邊相切于點(diǎn)D,連接OB,OD.若∠ABC=40,則∠BOD的度數(shù)是__________. 9.(xx婁底中考)如圖,已知半圓O與四邊形ABCD的邊AD,AB,BC都相切,切點(diǎn)分別為D,E,C,半徑OC=1,則AEBE=______. 10.(2019改編題)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過(guò)點(diǎn)C的⊙O的切線,∠BAC=∠CAD. (1)求證:AD⊥EF; (2)若∠B=30,AB=12,求AD的長(zhǎng). 11.(xx常德中考)如圖,已知⊙O是等邊三角形ABC的外接圓,點(diǎn)D在圓上,在CD的延長(zhǎng)線上有一點(diǎn)F,使DF=DA,AE∥BC交CF于點(diǎn)E. (1)求證:EA是⊙O的切線; (2)求證:BD=CF. 12.(xx重慶中考B卷)如圖,△ABC中,∠A=30,點(diǎn)O是邊AB上一點(diǎn),以點(diǎn)O為圓心,以O(shè)B為半徑作圓,⊙O恰好與AC相切于點(diǎn)D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長(zhǎng)是( ) A.2 B. C. D. 13.(xx無(wú)錫中考)如圖,矩形ABCD中,G是BC的中點(diǎn),過(guò)A,D,G三點(diǎn)的⊙O與邊AB,CD分別交于點(diǎn)E,點(diǎn)F,給出下列說(shuō)法:(1)AC與BD的交點(diǎn)是⊙O的圓心;(2)AF與DE的交點(diǎn)是⊙O的圓心;(3)BC與⊙O相切.其中正確說(shuō)法的個(gè)數(shù)是( ) A.0 B.1 C.2 D.3 14.(xx陽(yáng)信模擬)如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以點(diǎn)D為圓心,1為半徑作⊙D,P為⊙D上的一個(gè)動(dòng)點(diǎn),連接AP,OP,則△AOP面積的最大值為( ) A.4 B. C. D. 15.(xx南京中考)如圖,在矩形ABCD中,AB=5,BC=4,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長(zhǎng)為_(kāi)_______. 16.(2019原創(chuàng)題)如圖所示,在Rt△ABC中,以斜邊AB為直徑作⊙O,延長(zhǎng)BC至點(diǎn)D,恰好使得AD=AB,過(guò)點(diǎn)C作CE⊥AD,延長(zhǎng)DA交⊙O于點(diǎn)F. (1)求證:CE是⊙O的切線; (2)若AB=10,CE+EA=4,求AF的長(zhǎng)度. 17.(xx宜賓中考)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),D為BC延長(zhǎng)線上一點(diǎn),且BC=CD,CE⊥AD于點(diǎn)E. (1)求證:EC為⊙O的切線; (2)設(shè)BE與⊙O交于點(diǎn)F,AF的延長(zhǎng)線與CE交于點(diǎn)P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值. 18.(2019創(chuàng)新題)閱讀材料: 在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離公式為d=. 例如:求點(diǎn)P0(0,0)到直線4x+3y-3=0的距離. 解:由直線4x+3y-3=0知,A=4,B=3,C=-3, ∴點(diǎn)P0(0,0)到直線4x+3y-3=0的距離為d==. 根據(jù)以上材料,解決下列問(wèn)題: 問(wèn)題1:點(diǎn)P1(3,4)到直線y=-x+的距離為_(kāi)_________; 問(wèn)題2:已知⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=-x+b相切,求實(shí)數(shù)b的值; 問(wèn)題3:如圖,設(shè)點(diǎn)P為問(wèn)題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出S△ABP的最大值和最小值. 參考答案 【基礎(chǔ)訓(xùn)練】 1.B 2.B 3.C 4.D 5.A 6.26 7.44 8.70 9.1 10.(1)證明:如圖,連接OC. ∵EF是過(guò)點(diǎn)C的⊙O的切線,∴OC⊥EF, ∴∠OCA+∠ACD=90. ∵OC=OA,∴∠OCA=∠BAC=∠CAD, ∴∠CAD+∠ACD=90, ∴AD⊥EF. (2)解:∵OB=OC,∴∠B=∠OCB=30. 又∵∠AOC是△BOC的外角, ∴∠AOC=∠B+∠OCB=60. 又∵OA=OC, ∴△AOC為等邊三角形,∴AC=AB=6. 又∵∠ACD=30,∴AD=AC, ∴AD=3. 11.證明:(1)如圖,連接OA. ∵⊙O是等邊三角形ABC的外接圓, ∴∠OAC=30,∠BCA=60. ∵AE∥BC,∴∠EAC=∠BCA=60, ∴∠OAE=∠OAC+∠EAC=30+60=90, ∴EA是⊙O的切線. (2)∵△ABC是等邊三角形, ∴AB=AC,∠BAC=∠ABC=60. ∵A,B,C,D四點(diǎn)共圓, ∴∠ADF=∠ABC=60. ∵AD=DF,∴△ADF是等邊三角形, ∴AD=AF,∠DAF=60, ∴∠BAC+∠CAD=∠DAF+∠CAD, 即∠BAD=∠CAF. 在△BAD和△CAF中, ∵ ∴△BAD≌△CAF,∴BD=CF. 【拔高訓(xùn)練】 12.B 13.C 14.D 15.4 16.(1)證明:∵OB=OC,∴∠ABC=∠OCB. ∵AB=AD,∴∠ABC=∠ADB, ∴∠OCB=∠ADB,∴OC∥AD. ∵CE⊥AD,∴∠AEC=∠OCE=90, ∴CE是⊙O的切線. (2)解:如圖,過(guò)點(diǎn)O作OH⊥AF于點(diǎn)H, 則∠OCE=∠CEH=∠OHE=90, ∴四邊形OCEH是矩形, ∴OC=EH,OH=CE. 設(shè)AH=x. ∵CE+AE=4,OC=5, ∴AE=5-x,OH=4-(5-x)=x-1. 在Rt△AOH中,由勾股定理得AH2+OH2=OA2, 即x2+(x-1)2=52, 解得x1=4,x2=-3(不符合題意,舍去), ∴AH=4. ∵OH⊥AF,∴AH=FH=AF, ∴AF=2AH=24=8. 17.(1)證明:∵CE⊥AD,∴∠DEC=90. ∵BC=CD,∴點(diǎn)C是BD的中點(diǎn). 又∵點(diǎn)O是AB的中點(diǎn), ∴OC是△BDA的中位線,∴OC∥AD, ∴∠OCE=∠CED=90,∴OC⊥CE. 又∵點(diǎn)C在⊙O上,∴EC為⊙O的切線. (2)解:如圖,連接AC. ∵AB是直徑,點(diǎn)F在⊙O上, ∴∠AFB=∠PFE=∠CEA=90. ∵∠EPF=∠EPA,∴△PEF∽△PAE, ∴PE2=PFPA. ∵∠FBC=∠PCF=∠CAF, 又∵∠CPF=∠CPA,∴△PCF∽△PAC, ∴PC2=PFPA,∴PE=PC. 在Rt△PEF中,sin∠PEF==. 【培優(yōu)訓(xùn)練】 18.解:?jiǎn)栴}1:4 提示:直線方程整理得3x+4y-5=0, 故A=3,B=4,C=-5, ∴點(diǎn)P1(3,4)到直線y=-x+的距離為 d==4. 問(wèn)題2:直線y=-x+b整理得3x+4y-4b=0, 故A=3,B=4,C=-4b. ∵⊙C與直線相切,∴點(diǎn)C到直線的距離等于半徑, 即=1, 整理得|10-4b|=5,解得b=或b=. 問(wèn)題3:如圖,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D. ∵在3x+4y+5=0中,A=3,B=4,C=5, ∴圓心C(2,1)到直線AB的距離 CD==3, ∴⊙C上的點(diǎn)到直線AB的最大距離為3+1=4,最小距離為3-1=2, ∴S△ABP的最大值為24=4, 最小值為22=2.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 山東省濱州市2019中考數(shù)學(xué) 第六章 第二節(jié) 與圓有關(guān)的位置關(guān)系習(xí)題 山東省 濱州市 2019 中考 數(shù)學(xué) 第六 第二 有關(guān) 位置 關(guān)系 習(xí)題
鏈接地址:http://kudomayuko.com/p-5446541.html