高考數(shù)學(xué) 考前三個(gè)月復(fù)習(xí)沖刺 專題6 第25練 空間幾何體的三視圖及表面積與體積課件 理.ppt
《高考數(shù)學(xué) 考前三個(gè)月復(fù)習(xí)沖刺 專題6 第25練 空間幾何體的三視圖及表面積與體積課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 考前三個(gè)月復(fù)習(xí)沖刺 專題6 第25練 空間幾何體的三視圖及表面積與體積課件 理.ppt(53頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題6立體幾何與空間向量 第25練空間幾何體的三視圖及表面積與體積 題型分析 高考展望 三視圖作為新課標(biāo)新增加的內(nèi)容 是高考的熱點(diǎn)和重點(diǎn) 其考查形式多種多樣 選擇題 填空題和綜合解答題都有出現(xiàn) 而這些題目以選擇題居多 立體幾何中的計(jì)算問題考查的知識(shí) 涉及到三視圖 空間幾何體的表面積和體積以及綜合解答和證明 常考題型精析 高考題型精練 題型一三視圖識(shí)圖 題型二空間幾何體的表面積和體積 ??碱}型精析 題型一三視圖識(shí)圖 例1 1 2014 湖北 在如圖所示的空間直角坐標(biāo)系O xyz中 一個(gè)四面體的頂點(diǎn)坐標(biāo)分別是 0 0 2 2 2 0 1 2 1 2 2 2 給出編號(hào)為 的四個(gè)圖 則該四面體的正視圖和俯視圖分別為 A 和 B 和 C 和 D 和 解析由三視圖可知 該幾何體的正視圖是一個(gè)直角三角形 三個(gè)頂點(diǎn)的坐標(biāo)分別是 0 0 2 0 2 0 0 2 2 且內(nèi)有一虛線 一頂點(diǎn)與另一直角邊中點(diǎn)的連線 故正視圖是 俯視圖即在底面的射影是一個(gè)斜三角形 三個(gè)頂點(diǎn)的坐標(biāo)分別是 0 0 0 2 2 0 1 2 0 故俯視圖是 答案D 2 將正方體 如圖 1 所示 截去兩個(gè)三棱錐 得到如圖 2 所示的幾何體 則該幾何體的側(cè) 左 視圖為 解析還原正方體后 將D1 D A三點(diǎn)分別向正方體右側(cè)面作垂線 D1A的射影為C1B 且為實(shí)線 B1C被遮擋應(yīng)為虛線 答案B 點(diǎn)評(píng)畫法規(guī)則 1 由幾何體的輪廓線定形狀 看到的畫成實(shí)線 看不到的畫成虛線 2 正 主 俯一樣長(zhǎng) 俯側(cè) 左 一樣寬 正 主 側(cè) 左 一樣高 變式訓(xùn)練1 2014 江西 一幾何體的直觀圖如圖 下列給出的四個(gè)俯視圖中正確的是 解析該幾何體是組合體 上面的幾何體是一個(gè)五面體 下面是一個(gè)長(zhǎng)方體 且五面體的一個(gè)面即為長(zhǎng)方體的一個(gè)面 五面體最上面的棱的兩端點(diǎn)在底面的射影距左右兩邊距離相等 因此選B 答案B 題型二空間幾何體的表面積和體積 例2 1 2015 安徽 一個(gè)四面體的三視圖如圖所示 則該四面體的表面積是 解析由空間幾何體的三視圖可得該空間幾何體的直觀圖 如圖 故選B 答案B 2 2015 天津 一個(gè)幾何體的三視圖如圖所示 單位 m 則該幾何體的體積為 m3 解析由三視圖可知 該幾何體由相同底面的兩圓錐和圓柱組成 底面半徑為1m 圓錐的高為1m 圓柱的高為2m 點(diǎn)評(píng)利用三視圖求幾何體的表面積 體積 需先由三視圖還原幾何體 三個(gè)圖形結(jié)合得出幾何體的大體形狀 由實(shí)虛線得出局部位置的形狀 再由幾何體的面積體積公式求解 變式訓(xùn)練2 2014 陜西 四面體ABCD及其三視圖如圖所示 平行于棱AD BC的平面分別交四面體的棱AB BD DC CA于點(diǎn)E F G H 1 求四面體ABCD的體積 解由該四面體的三視圖可知 BD DC BD AD AD DC BD DC 2 AD 1 AD 平面BDC 2 證明 四邊形EFGH是矩形 證明 BC 平面EFGH 平面EFGH 平面BDC FG 平面EFGH 平面ABC EH BC FG BC EH FG EH 同理EF AD HG AD EF HG 四邊形EFGH是平行四邊形 又 AD 平面BDC AD BC EF FG 四邊形EFGH是矩形 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 1 2015 課標(biāo)全國(guó) 圓柱被一個(gè)平面截去一部分后與半球 半徑為r 組成一個(gè)幾何體 該幾何體三視圖中的正視圖和俯視圖如圖所示 若該幾何體的表面積為16 20 則r等于 A 1B 2C 4D 8 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析由正 主 視圖與俯視圖想象出其直觀圖 然后進(jìn)行運(yùn)算求解 如圖 該幾何體是一個(gè)半球與一個(gè)半圓柱的組合體 球的半徑為r 圓柱的底面半徑為r 高為2r 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 又S 16 20 5 4 r2 16 20 r2 4 r 2 故選B 答案B 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 2 2015 重慶 某幾何體的三視圖如圖所示 則該幾何體的體積為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 答案A 解析這是一個(gè)三棱錐與半個(gè)圓柱的組合體 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 3 2014 浙江 某幾何體的三視圖 單位 cm 如圖所示 則此幾何體的表面積是 A 90cm2B 129cm2C 132cm2D 138cm2 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析該幾何體如圖所示 長(zhǎng)方體的長(zhǎng) 寬 高分別為6cm 4cm 3cm 直三棱柱的底面是直角三角形 邊長(zhǎng)分別為3cm 4cm 5cm 答案D 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 4 如圖是某簡(jiǎn)單組合體的三視圖 則該組合體的體積為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析由俯視圖可知該幾何體的底面由三角形和半圓兩部分構(gòu)成 結(jié)合正 主 視圖和側(cè) 左 視圖可知該幾何體是由半個(gè)圓錐與一個(gè)三棱錐組合而成的 并且圓錐的軸截面與三棱錐的一個(gè)側(cè)面重合 兩個(gè)錐體的高相等 由三視圖中的數(shù)據(jù) 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 可得該圓錐的底面半徑r 6 三棱錐的底面是一個(gè)底邊長(zhǎng)為12 高為6的等腰三角形 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 答案B 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 5 2014 重慶 某幾何體的三視圖如圖所示 則該幾何體的表面積為 A 54B 60C 66D 72 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析由俯視圖可以判斷該幾何體的底面為直角三角形 由正 主 視圖和側(cè) 左 視圖可以判斷該幾何體是由直三棱柱 側(cè)棱與底面垂直的棱柱 截取得到的 在長(zhǎng)方體中分析還原 如圖 1 所示 故該幾何體的直觀圖如圖 2 所示 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 計(jì)算可得A1P 5 因?yàn)锳1C1 平面A1ABP A1P 平面A1ABP 矩形ACC1A1的面積為5 3 15 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 答案B 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 6 兩球O1和O2在棱長(zhǎng)為1的正方體ABCD A1B1C1D1的內(nèi)部 且互相外切 若球O1與過點(diǎn)A的正方體的三個(gè)面相切 球O2與過點(diǎn)C1的正方體的三個(gè)面相切 則球O1和球O2的表面積之和的最小值為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析設(shè)球O1 O2的半徑分別為r1 r2 答案A 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析如圖 過A作AD垂直SC于D 連接BD 由于SC是球的直徑 所以 SAC SBC 90 又 ASC BSC 30 又SC為公共邊 所以 SAC SBC 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 由于AD SC 所以BD SC 由此得SC 平面ABD 由于在Rt SAC中 ASC 30 SC 4 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 答案C 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析過點(diǎn)C作CE垂直AD所在直線于點(diǎn)E 梯形ABCD繞AD所在直線旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體是由以線段AB的長(zhǎng)為底面圓半徑 線段BC為母線的圓柱挖去以線段CE的長(zhǎng)為底面圓半徑 ED為高的圓錐 答案C 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 9 2014 北京 某三棱錐的三視圖如圖所示 則該三棱錐最長(zhǎng)棱的棱長(zhǎng)為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析根據(jù)三視圖還原幾何體 得如圖所示的三棱錐P ABC 由三視圖的形狀特征及數(shù)據(jù) 可推知PA 平面ABC 且PA 2 底面為等腰三角形 AB BC 設(shè)D為AC的中點(diǎn) AC 2 則AD DC 1 且BD 1 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 10 一個(gè)幾何體的三視圖如圖所示 其中正 主 視圖是等邊三角形 俯視圖是半圓 現(xiàn)有一只螞蟻從點(diǎn)A出發(fā)沿該幾何體的側(cè)面環(huán)繞一周回到A點(diǎn) 則螞蟻所經(jīng)過路程的最小值為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析如圖所示 側(cè)面展開圖為一個(gè)四分之一圓與一個(gè)等邊三角形 從點(diǎn)A出發(fā)沿該幾何體的側(cè)面環(huán)繞一周回到A點(diǎn) 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 11 如圖所示是一幾何體的直觀圖及正 主 視圖 側(cè) 左 視圖 俯視圖 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 1 若F為PD的中點(diǎn) 證明 AF 平面PCD 證明由幾何體的三視圖 可知底面ABCD是邊長(zhǎng)為4的正方形 PA 平面ABCD PA EB PA 2EB 4 因?yàn)镻A AD F為PD的中點(diǎn) 所以PD AF 又CD DA CD PA PA DA A 所以CD 平面ADP 所以CD AF 又CD DP D 所以AF 平面PCD 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 2 證明 BD 平面PEC 證明取PC的中點(diǎn)M 連接AC EM AC與BD的交點(diǎn)為N 連接MN 所以MN EB MN EB 故四邊形BEMN為平行四邊形 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 所以EM BN 又EM 平面PEC BN 平面PEC 所以BD 平面PEC 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 12 如圖1 在直角梯形ABCD中 ADC 90 CD AB AB 4 AD CD 2 將 ADC沿AC折起 使平面ADC 平面ABC 得到幾何體D ABC 如圖2所示 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 1 求證 BC 平面ACD 從而AC2 BC2 AB2 故AC BC 又平面ADC 平面ABC 平面ADC 平面ABC AC BC 平面ABC BC 平面ACD 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 2 求幾何體D ABC的體積 解由 1 可知BC為三棱錐B ACD的高- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué) 考前三個(gè)月復(fù)習(xí)沖刺 專題6 第25練 空間幾何體的三視圖及表面積與體積課件 高考 數(shù)學(xué) 考前 三個(gè)月 復(fù)習(xí) 沖刺 專題 25 空間 幾何體 視圖 表面積 體積 課件
鏈接地址:http://kudomayuko.com/p-5622246.html