《新編一輪優(yōu)化探究文數(shù)蘇教版練習(xí):第二章 第十節(jié) 函數(shù)模型及其應(yīng)用 Word版含解析》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編一輪優(yōu)化探究文數(shù)蘇教版練習(xí):第二章 第十節(jié) 函數(shù)模型及其應(yīng)用 Word版含解析(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
一、填空題
1.一批設(shè)備價(jià)值1萬(wàn)元,由于使用磨損,每年比上一年價(jià)值降低50%,則3年后這批設(shè)備的價(jià)值為_(kāi)_______萬(wàn)元(用數(shù)字作答).
解析:1×(1-50%)3=0.125.
答案:0.125
2.某公司在甲、乙兩地銷(xiāo)售一種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為L(zhǎng)1=5.06x-0.15x2和L2=2x,其中x為銷(xiāo)售量(單位:輛).若該公司在這兩地共銷(xiāo)售15輛車(chē),則能獲得的最大利潤(rùn)為_(kāi)_______萬(wàn)元.
解析:依題意可設(shè)甲銷(xiāo)售x輛,則乙銷(xiāo)售(15-x)輛,
∴總利潤(rùn)S=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
∴當(dāng)x=1
2、0時(shí),Smax=45.6(萬(wàn)元).
答案:45.6
3.由于電子技術(shù)的飛速發(fā)展,計(jì)算機(jī)的成本不斷降低,若每隔5年計(jì)算機(jī)的價(jià)格降低,則現(xiàn)在價(jià)格為8 100元的計(jì)算機(jī)經(jīng)過(guò)15年的價(jià)格應(yīng)降為_(kāi)_______.
解析:設(shè)經(jīng)過(guò)3個(gè)5年,產(chǎn)品價(jià)格為y元,則y=8 100×(1-)3=8 100×=2 400(元).
答案:2 400元
4.某工廠(chǎng)生產(chǎn)某種產(chǎn)品固定成本為2 000萬(wàn)元,并且每生產(chǎn)一單位產(chǎn)品,成本增加10萬(wàn)元,又知總收入k是單位產(chǎn)品數(shù)Q的函數(shù),k(Q)=40Q-Q2,則總利潤(rùn)L(Q)的最大值是________萬(wàn)元.
解析:總利潤(rùn)L(Q)=40Q-Q2-10Q-2 000
=-(Q
3、-300)2+2 500.
故當(dāng)Q=300時(shí),總利潤(rùn)最大,為2 500萬(wàn)元.
答案:2 500
5.某市出租車(chē)收費(fèi)標(biāo)準(zhǔn)如下:起步價(jià)為8元,起步里程為3 km(不超過(guò)3 km按起步價(jià)付費(fèi));超過(guò)3 km但不超過(guò)8 km時(shí),超過(guò)部分按每千米2.15元收費(fèi);超過(guò)8 km時(shí),超過(guò)部分按每千米2.85元收費(fèi),另每次乘坐需付燃油附加費(fèi)1元.現(xiàn)某人乘坐一次出租車(chē)付費(fèi)22.6元,則此次出租車(chē)行駛了________km.
解析:由y=
可得x=9.
答案:9
6.中國(guó)政府正式加入世貿(mào)組織后,從2000年開(kāi)始,汽車(chē)進(jìn)口關(guān)稅將大幅度下降.若進(jìn)口一輛汽車(chē)2001年售價(jià)為30萬(wàn)元,五年后()售價(jià)為y萬(wàn)元,
4、每年下調(diào)率平均為x%,那么y和x的函數(shù)關(guān)系式為_(kāi)_______.
解析:每年價(jià)格為上一年的(1-x%)倍,所以五年后的價(jià)格為y=30(1-x%)5.
答案:y=30(1-x%)5
7.某商場(chǎng)宣傳在節(jié)假日對(duì)顧客購(gòu)物實(shí)行一定的優(yōu)惠,商場(chǎng)規(guī)定:
①如一次購(gòu)物不超過(guò)200元,不予以折扣;
②如一次購(gòu)物超過(guò)200元,但不超過(guò)500元,按標(biāo)價(jià)予以九折優(yōu)惠;
③如一次購(gòu)物超過(guò)500元的,其中500元給予九折優(yōu)惠,超過(guò)500元的給予八五折優(yōu)惠.
某人兩次去購(gòu)物,分別付款176元和432元,如果他只去一次購(gòu)買(mǎi)同樣的商品,則應(yīng)付款________元.
解析:由題意付款432元,實(shí)際標(biāo)價(jià)為432×=
5、480(元),如果一次購(gòu)買(mǎi)標(biāo)價(jià)176+480=656(元)的商品應(yīng)付款500×0.9+156×0.85=582.6(元).
答案:582.6
8.在一定范圍內(nèi),某種產(chǎn)品的購(gòu)買(mǎi)量y噸與單價(jià)x元之間滿(mǎn)足一次函數(shù)關(guān)系,如果購(gòu)買(mǎi)1 000噸,每噸為800元,如果購(gòu)買(mǎi)2 000噸,每噸為700元,一客戶(hù)購(gòu)買(mǎi)400噸,單價(jià)應(yīng)該是________元.
解析:設(shè)y=ax+b,則,
解得,
∴y=-10x+9 000,由400=-10x+9 000,得x=860(元).
答案:860
9.一位設(shè)計(jì)師在邊長(zhǎng)為3的正方形ABCD中設(shè)計(jì)圖案,他分別以A,B,C,D為圓心,以b(0
6、方形內(nèi)的圓弧與正方形邊上線(xiàn)段(圓弧端點(diǎn)在正方形邊上的連線(xiàn))構(gòu)成了豐富多彩的圖形,則這些圖形中實(shí)線(xiàn)部分總長(zhǎng)度的最小值為_(kāi)_______.
解析:由題意知實(shí)線(xiàn)部分的總長(zhǎng)度為l=4(3-2b)+2πb=(2π-8)b+12,l關(guān)于b的一次函數(shù)的一次項(xiàng)系數(shù)2π-8<0,故l關(guān)于b為單調(diào)減函數(shù),因此,當(dāng)b取最大值時(shí),l取得最小值,結(jié)合圖形知,b的最大值為,代入上式得lmin=(2π-8)×+12=3π.
答案:3π
二、解答題
10.某開(kāi)發(fā)商用9 000萬(wàn)元在市區(qū)購(gòu)買(mǎi)一塊土地建一幢寫(xiě)字樓,規(guī)劃要求寫(xiě)字樓每層建筑面積為2 000平方米.已知該寫(xiě)字樓第一層的建筑費(fèi)用為每平方米4 000元,從第二層開(kāi)
7、始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.
(1)若該寫(xiě)字樓共x層,總開(kāi)發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的解析式;(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫(xiě)字樓每平方米開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為多少層?
解析:(1)由已知,寫(xiě)字樓最下面一層的總建筑費(fèi)用為
4 000×2 000=8 000 000(元)=800(萬(wàn)元),
從第二層開(kāi)始,每層的建筑總費(fèi)用比其下面一層多
100×2 000=200 000(元)=20(萬(wàn)元),
所以寫(xiě)字樓從下到上各層的總建筑費(fèi)用構(gòu)成以800為首項(xiàng),20為公差的等差數(shù)列,所以
y=f(x)=800x+×20+9 000
8、=10x2+790x+9 000(x∈N*).
(2)由(1)知寫(xiě)字樓每平方米平均開(kāi)發(fā)費(fèi)用為
g(x)=×10 000=
=50(x++79)≥50×(2+79)=6 950,
當(dāng)且僅當(dāng)x=,即x=30時(shí),等號(hào)成立.
所以要使整幢寫(xiě)字樓每平方米開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為30層.
11.某工廠(chǎng)每天生產(chǎn)某種產(chǎn)品最多不超過(guò)40件,并且在生產(chǎn)過(guò)程中產(chǎn)品的正品率P與每日生產(chǎn)的產(chǎn)品件數(shù)x(x∈N*)之間的關(guān)系為P=,每生產(chǎn)一件正品盈利4 000元,每出現(xiàn)一件次品虧損2 000元.
(1)將日利潤(rùn)y(元)表示成產(chǎn)量x(件)的函數(shù);
(2)求該廠(chǎng)的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出日利潤(rùn)的
9、最大值.
解析:(1)∵y=4 000×·x-2 000(1-)·x=3 600x-x3,
∴所求的函數(shù)關(guān)系式是y=-x3+3 600x(x∈N*,1≤x≤40).
(2)易得y′=3 600-4x2,令y′=0,解得x=30.
∴當(dāng)1≤x<30時(shí),y′>0;當(dāng)30
10、利潤(rùn)最大,其最大值為72 000元.
12.將52名志愿者分成A,B兩組參加義務(wù)植樹(shù)活動(dòng),A組種植150捆白楊樹(shù)苗,B組種植200捆沙棘樹(shù)苗,假定A,B兩組同時(shí)開(kāi)始種植.
(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹(shù)苗用時(shí) h,種植一捆沙棘樹(shù)苗用時(shí) h.應(yīng)如何分配A,B兩組的人數(shù),使植樹(shù)活動(dòng)持續(xù)時(shí)間最短?
(2)在按(1)分配的人數(shù)種植1 h后發(fā)現(xiàn),每名志愿者種植一捆白楊樹(shù)苗用時(shí)仍為 h,而每名志愿者種植一捆沙棘樹(shù)苗實(shí)際用時(shí) h,于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹(shù)活動(dòng)所持續(xù)的時(shí)間.
解析:(1)設(shè)A組人數(shù)為x,且0F(20).
所以當(dāng)A,B兩組人數(shù)分別為20,32時(shí),植樹(shù)活動(dòng)持續(xù)時(shí)間最短.
(2)A組所需時(shí)間為
1+=3,
B組所需時(shí)間為
1+=3,
所以植樹(shù)活動(dòng)所持續(xù)的時(shí)間為3 h.