壓縮包已打包上傳。下載文件后為完整一套設(shè)計。【清晰,無水印,可編輯】dwg后綴為cad圖紙,doc后綴為word格式,所見即所得。有疑問可以咨詢QQ 197216396 或 11970985
提高板材成形效率的坐標網(wǎng)分析法
J.H. Yoon, H. Huh.
機械工程學院,韓國高級科學協(xié)會和技術(shù)科學鎮(zhèn)
Daejeon 305-701,南韓
摘要
本篇文章是采用一種新推出的方法來對提高板材的成形效率進行分析,這種方法就是坐標網(wǎng)分析法。這種方法就是研究扭曲單體,即通過適當?shù)难芯恳?guī)范,建立補片,包括修正后的單體。每一片都被擴展到一個三維的表面從而獲得一個連續(xù)坐標的信息。在構(gòu)造表面時,應包括每一個片,NURBS(非均勻有理B樣條)表面被用來描述一個三維自由表面。以被構(gòu)造表面為基礎(chǔ),每一個節(jié)點一般被安排成一個非常接近正方形的單體元素。計算狀態(tài)函數(shù)是從它原始的網(wǎng)格系統(tǒng)映射到新的網(wǎng)格之內(nèi),從而對成形進行下一階段的分析或更進一步的分析。按網(wǎng)格方法的分析結(jié)果與沒有坐標網(wǎng)方法直接成行的分析結(jié)果相比較來確定哪一種方法是更有效的。
? 2003 Elsevier B.V. 版權(quán)所有.
關(guān)鍵詞:坐標網(wǎng);變形單體;NURBS;有限元分析
1. 概述
隨著計算機技術(shù)和數(shù)字技術(shù)的結(jié)合和快速發(fā)展,用數(shù)字模擬進行板材成形加工達到空前的繁榮。數(shù)字分析對復雜幾何圖形的板材成形和多級成形都可以做到。對于一個復雜的幾何模型來說,盡管局部嚴重變形將會導致計算時間的增加和數(shù)據(jù)分析的減少。從而使分析結(jié)果更加不準確。幾何網(wǎng)格的扭曲和嚴重變形對板材成形的質(zhì)量有很大影響,特別是對于多級成形。當上一級成形的分析結(jié)果用于下一級成形分析時,幾何網(wǎng)格的扭曲和變形對分析結(jié)果影響更大。這種被扭曲網(wǎng)格的錯誤表象可以通過整體的或自適應重嚙合技術(shù)的網(wǎng)格系統(tǒng)的重建來避免。在模擬期間,減少單體扭曲,自適應重嚙合技術(shù)被認為是一種有效的方法。但是,它仍然需要大量的計算,并且在單體的細分中也受到限制。
要構(gòu)造一個網(wǎng)格系統(tǒng)的有效方法已經(jīng)被許多研究人員提上日程。典型的方法可能是下面幾種:r-方法,h-方法,p-方法。r-方法就是在網(wǎng)格系統(tǒng)的總的自由度不變的情況下,節(jié)點被完全重排;h-方法就是在元素單體具有相同的自由度的情況下讓網(wǎng)格的數(shù)目增加;p-方法就是通過網(wǎng)格系統(tǒng)的整體自由度的增加來提高分析的準確性。Sluiter 和Hansen[文獻4]和Talbert 和 Parkinson[文獻5]構(gòu)造了一個晶格分析范圍,它像一個連續(xù)的環(huán),而且是從主要環(huán)中分離出的子環(huán)元素。Lo[文獻6]在整個晶格范圍內(nèi)構(gòu)造了一個三角形元,并且通過合并鄰近的三角形元而構(gòu)造矩形元素。
本篇文章中的坐標網(wǎng)方法是一種新推出的方法,它旨在用有限元分析提高板材成形效率。坐標網(wǎng)法根據(jù)一些規(guī)范可以自動地找出變形單體,并對這些片進行修正。然后,每一片都被擴展到一個三維表面用來獲得在三維表面的連續(xù)坐標系的信息。這個包含了每一片的表面用來作為使用了NURBS的三維自由表面來描述。以被構(gòu)造表面為基礎(chǔ),每一個節(jié)點都被徹底改變,用來組成一個正方形的規(guī)則單體。狀態(tài)函數(shù)的計算是從它原始幾何網(wǎng)格映射到新的網(wǎng)格之內(nèi),從而進行下一階段的成形分析。從得到的數(shù)據(jù)結(jié)果中證實使用坐標網(wǎng)方法的效率和結(jié)果的準確性。這也證實了此種方法在板材構(gòu)件碰撞分析的成形模擬中的有效性。
2. 體的規(guī)則化
之所以要介紹對變形體的修正使之成為一個規(guī)則化過程,是為了提高變形體在下一個有限元計算中的分析效率。在規(guī)則化過程中,變形體根據(jù)適當?shù)乃阉饕?guī)范有選擇的分配到各片。這些片通過分析NURBS在連續(xù)坐標系的三維表面上的全部數(shù)據(jù)而擴展到一個三維表面。變形后的每個節(jié)點為了得到一個新坐標將被調(diào)整為一個近似正方形的規(guī)則單體。
2.1 網(wǎng)格變形標準
變形有兩種幾何標準可供選擇:一是內(nèi)角;另一個是單體縱橫比。
2.1.1 內(nèi)角
從有限元計算中得到矩形元素的內(nèi)角應是接近直角的。Zhu et al. [文獻7]給了這種元素一個合理的定義,就是當四個內(nèi)角都是在 90 ?±45 ?的范圍內(nèi)時。同時Lo和Lee[文獻8]也提出了相同情況下的內(nèi)角,角度在90 ?±52.5?范圍內(nèi)。內(nèi)角的網(wǎng)孔變形是由式(1)的構(gòu)成所決定的。當式 (1).小于π/3 或 (δθi)max在式(3) [9]中大于π/6 網(wǎng)孔被認為是變形的。這個標準之所以相當嚴格是為了避免萬一在限制區(qū)域應用規(guī)則化方法受到幾何圖形的限制:
2.1.2 單體縱橫比
四條邊具有相同長度的理想單體的縱橫比應該是一致的??v橫比被定義如式(4),并且當變形小于5即比嚴格標準少很多時,它也被定義:
此處rij表示單體邊長。
2.2.作圖范圍
2.2.1 片的設(shè)計
通過網(wǎng)格變形標準所選擇的變形單體,根據(jù)它們在幾何成形時外形的復雜程度被分不到各個不同的區(qū)域。這些單體被分配到各片,并用來構(gòu)造算法效率。這些片的形狀被拼湊成矩形,包括所有變形體,目的是擴大規(guī)則化和NURBS表面在下一部分說明中的應用。這個過程如圖1所示,當孔和邊緣被設(shè)置在變形體中時,這些區(qū)域被填滿,從而得到矩形片。
然后,這些片利用NURBS表面映射到一個三維自由表面。這個過程對于在三維表面上獲得連續(xù)坐標的全部信息是非常重要的。NURBS表面在使用較少的數(shù)據(jù)點和由于局部改變而不改變這個區(qū)域的數(shù)據(jù)的情況下快速的描述這個復雜的形狀。
2.2.2 NURBS表面
NURBS表面通常通過如式(5)來表述,像p-向量在u-方向中和q-向量在v-方向中[10]:
此處Pi,j是控制點如u-, q- 方向。Wi,j是加權(quán)因子,是基礎(chǔ)函數(shù)通過式(6)來表達:
為了把這些點映射到構(gòu)造的表面上,一系列連續(xù)的點在NURBS表面創(chuàng)建了。每一個用規(guī)則化方法移動過的節(jié)點都被定位,以至于在NURBS表面上定位點在兩節(jié)點之間有最小距離。這些移動過的連續(xù)節(jié)點的信息都被存儲,用來構(gòu)造一個新的網(wǎng)格系統(tǒng)。
2.3 規(guī)則化過程
規(guī)則化方法與形成矩形片單體一起完成的。規(guī)則化的有限元通過圖2所示次序被依次選擇。每一個被選擇的單體都被分成兩個三角形元,并且這些三角形元通過圓心的重定位都由直角三角形元組成,圓的直徑如式(7)和圖3所示,從X1到X2。當這個過程結(jié)束的時候,相同的過程在另一方向被重復:
通過規(guī)則化方法對節(jié)點的重定位,其最終位置被在NURBS表面上的點的位置所代替。當規(guī)則化過程完成后,為產(chǎn)生粗糙的區(qū)域,一個簡單的緩和的過程通過式(8)被執(zhí)行:
此處PN是新節(jié)點的坐標,Ai 臨近區(qū)域的元素的坐標,Ci 臨近元素的質(zhì)心。
2.4 變形程度
作為一個變形因子,變形程度(LD)是最新提出的 ,LD可能是用來評估單體在質(zhì)量方面改進的程度:
此處
LD在0和1之間浮動;當LD=1時,單體是一個方形的理想單體,當LD=0時,四邊形元變成了三角形元。時單體的四個內(nèi)角,因此A是內(nèi)角因子,B是單體側(cè)面長寬比的因子并且為了使LD對B的變化不那么敏感,B被定義為雙曲線正切函數(shù)。例如,當單體側(cè)面合理的長寬比是1:4時,B的值可以通過和來調(diào)整,使函數(shù)B的斜率圍繞著B’=0.25急劇變化。結(jié)果,當?shù)拈L寬比小于0.25時,LD的值急劇增加,當大于0.25時,LD的值增加緩慢。這種方法可以調(diào)節(jié)內(nèi)角和長寬比使它們在LD上有相同的效果。
2.5 狀態(tài)函數(shù)的映射
當坐標網(wǎng)系統(tǒng)用于下一步的成形分析或結(jié)構(gòu)分析的計算時,狀態(tài)函數(shù)的映射就是非常必要的,通過映射,可以在考慮上一步成型過程的前提下得到更準確的分析。映射過程就是通過狀態(tài)函數(shù)的計算把原來的網(wǎng)格系統(tǒng)映射到新的坐標網(wǎng)系統(tǒng)。如圖4所示,一個球面在一個新節(jié)點周圍建立,將導致球面上節(jié)點的狀態(tài)函數(shù)影響新節(jié)點的狀態(tài)函數(shù)。新節(jié)點的狀態(tài)函數(shù)是由球面上原來節(jié)點的狀態(tài)函數(shù)所決定的,如式(12)所示,加權(quán)因子在兩節(jié)點的距離上成反比。
此處Vj是原始網(wǎng)格系統(tǒng)的狀態(tài)函數(shù)的計算結(jié)果,rj使新節(jié)點到附近節(jié)點的距離。
3.數(shù)例
3.1.1 油盤的成形分析
油盤在沖壓車間一般要經(jīng)過兩個工序制作,而根據(jù)現(xiàn)在這種方法,單工序沖壓就可以完成。如圖5所示的凸模和模架。
不論什么時候有限元系統(tǒng)需要提高計算效率,規(guī)則化方法都可應用于其中。在這個范例中,這種方法應用于油盤成形分析中的兩次成形間隙,如圖6所示。
圖7說明了規(guī)則化方法的過程。圖7(a)所示為成形時凸模行程為60%時的變形,有3個地方發(fā)生了網(wǎng)格變形,也就是片的數(shù)量是3。變形網(wǎng)格是根據(jù)2個網(wǎng)格變形的幾何規(guī)范來選取的。如圖7所示的包括所有變形體的矩形片的形成。最終補片中的單體被規(guī)則化,如圖7(c)所示。
為了評價應用規(guī)則化系統(tǒng)后的單體質(zhì)量的改進程度,應用規(guī)則化網(wǎng)格系統(tǒng)的LD值與原始網(wǎng)格系統(tǒng)的值相比較,結(jié)果如圖8所示應用了規(guī)則化系統(tǒng)的LD值在整個單體上均勻分布,而應用了一般網(wǎng)格系統(tǒng)的LD值則在很大范圍內(nèi)變化。這
就意味著在相同的變形程度下,應用規(guī)則化網(wǎng)格系統(tǒng)其質(zhì)量提高了。結(jié)果如圖9 所示,應用了規(guī)則化網(wǎng)格系統(tǒng)的有限元計算明顯領(lǐng)先于直接分析的。在油盤成形分析中,應用規(guī)則化網(wǎng)格系統(tǒng)可使計算時間減少了大約12%甚至減少了2倍,計算時間的減少量可能會隨著更頻繁的規(guī)則化調(diào)整而增加。
3.2 構(gòu)件主視圖的斷裂分析
碰撞分析通常是在不考慮成形結(jié)果的情況下采用網(wǎng)格系統(tǒng)完成的成形分析。如果考慮成形結(jié)果,即考慮分析結(jié)果的準確性和可靠性,那么用于成形分析的網(wǎng)格系統(tǒng)可能會直接應用于碰撞分析來分析其效率。成形分析后,在沒有重組合的情況下直接進行碰撞分析從而導致網(wǎng)格系統(tǒng)有很多網(wǎng)格發(fā)生了嚴重的扭曲和變形。一種補救的方法就是創(chuàng)建一個新的網(wǎng)格系統(tǒng),另一種方法就是成形分析之后修正網(wǎng)格系統(tǒng)。如果重組合過程能夠成功應用,應用后一種方法將非常有效。作為一種有效的重組合過程,規(guī)則化方法可以把變形網(wǎng)格轉(zhuǎn)換成一個新的正方形中去。本例中,構(gòu)件主板部分被命名為強化板,如圖10所示,它被選擇來進行碰撞分析。在成形分析后的構(gòu)件的局部變形區(qū)域,不規(guī)則的有限元通過如圖11所示的規(guī)則化方法修正成規(guī)則的單體,這個坐標網(wǎng)系統(tǒng)就用在碰撞分析中,如圖12所示。
使用坐標網(wǎng)系統(tǒng)的碰撞分析可以在不影響分析結(jié)果準確性的前提下通過選擇更大的時間間隔完成,如圖13所示。和原來的網(wǎng)格系統(tǒng)的計算時間比較,碰撞分析的時間減少了40%,分析結(jié)果在所用時間和計算結(jié)果的準確性方面都是較
好的,并且還證明了坐標網(wǎng)系統(tǒng)可以有效的提高數(shù)字分析效率。
4 結(jié)論
坐標網(wǎng)方法是一種新推出的用來提高有限元分析板材成形性能的方法。在板材成形分析中的網(wǎng)格變形如此嚴重,導致后來的分析困難或得到的結(jié)果不準確,但是現(xiàn)行的這種坐標網(wǎng)分析法對于重組合又最小作用,還可以避免上述情況。在逐漸增加的分析中或多級成形的下一級分析中,坐標網(wǎng)格可以完成。從板材成形模擬中可以獲得成形構(gòu)件的斷裂分析,當坐標網(wǎng)可以完成這些時,它也證明了使用坐標網(wǎng)分析性能得到很大提高。數(shù)字結(jié)果既證實了用坐標網(wǎng)分析法的有效性和效率性又證明了結(jié)果的準確性。
參考文獻:
[1] A.R. Diaz, N. Kikuchi, J.E. Taylor, A method of grid optimization for finite element methods, Comput. Meth. Appl. Mech. Eng. 41 (1983) 29–45.
[2] B.A. Szavo, Mesh design for the p-version of the finite element method, Comput. Meth. Appl. Mech. Eng. 55 (1986) 181–197.
[3] P. Diez, A. Huerta, A unified approach to remeshing strategies for finite element h-adaptivity, Comput. Meth. Appl. Mech. Eng. 176 (1999) 215–229.
[4] M.L.C. Sluiter, D.C. Hansen, A general purpose two-dimensional mesh generator for shell and solid finite elements, in: Computer in Engineering, vol. 3, ASME, 1982, pp. 29–34.
[5] J.A. Talbert, A.R. Parkinson, Development of an automatic, twodimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition, Int. J. Numer. Meth Eng. 29 (1990) 1551–1567.
[6] S.H. Lo, Generating quadrilateral elements on plane and over curved surfaces, Comput. Struct. 31 (1989) 421–426.
[7] J.Z. Zhu, O.C. Zienkiewicz, E. Hinton, J. Wu, A new approach to the development of automatic quadrilateral mesh generation, Int. J. Numer. Meth. Eng. 32 (1991) 849–866.
[8] S.H. Lo, C.K. Lee, On using meshes of mixed element types in adaptive finite element analysis, Finite Elem. Anal. Des. 11 (1992) 307–336.
[9] A. El-Hamalawi, A simple and effective element distortion factor, Comput. Struct. 75 (2000) 507–513.
[10] L. Piegl, W. Tiller, The NURBS Book, 2nd ed., Springer, New York, 1997.
誠 信 聲 明
本人聲明:
1、本人所呈交的畢業(yè)設(shè)計(論文)是在老師指導下進行的研究工作及取得的研究成果;
2、據(jù)查證,除了文中特別加以標注和致謝的地方外,畢業(yè)設(shè)計(論文)中不包含其他人已經(jīng)公開發(fā)表過的研究成果,也不包含為獲得其他教育機構(gòu)的學位而使用過的材料;
3、我承諾,本人提交的畢業(yè)設(shè)計(論文)中的所有內(nèi)容均真實、可信。
作者簽名: 日期: 年 月 日
畢業(yè)設(shè)計(論文)任務(wù)書
題目:__________________________________________________________________________
姓名 ____學院 __________專業(yè)__________ 班級___ 學號_________
指導老師 ______________職稱__________ 教研室主任 __________________
一、 基本任務(wù)及要求:
_查閱20篇以上參考文獻,設(shè)計一400t液壓機,完成總裝圖和規(guī)定的零部件圖,并按規(guī)定格式撰寫文獻綜述、開題報告、畢業(yè)設(shè)計說明書。要求:方案可行,機構(gòu)合理,經(jīng)濟實用,并滿足給定的以下設(shè)計技術(shù)條件。參數(shù):公稱壓力:4000kN:最大工作壓力:25MPa;開口高度:1400mm ;滑塊最大行程:800mm:工作臺面有效尺寸(長X寬):1200mmX1260mm。
_______________________________________________________________________
______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
二、 進度安排及完成時間:
__液壓機的總體設(shè)計,液壓機液壓系統(tǒng)設(shè)計,各部分的基本尺寸的計算和驗證,部件裝配圖、零件圖設(shè)計及三維建模。 _____________________________________________________________________
_______________________________________________________________________
______________________________________________________________________
_______________________________________________________________________
______________________________________________________________________
目 錄
摘 要 VI
Abstract 1
第1章 緒論 2
1.1 液壓機的概述 2
1.2液壓概況 3
1.3液壓工作原理 3
1.4 液壓系統(tǒng)的設(shè)計步驟與設(shè)計要求 4
1.5本論文研究的主要內(nèi)容 5
第2章 400T液壓機整體方案的擬定 6
2.1 設(shè)計思路 6
2.2擬定液壓原理圖 7
2.3 動作分析 8
2.1上橫梁結(jié)構(gòu) 10
2.1.1結(jié)構(gòu)形式 10
2.1.2形狀尺寸要求 11
2.1.3上橫梁與油缸的聯(lián)接方式 11
2.2滑塊結(jié)構(gòu) 11
2.2.1結(jié)構(gòu)形式 12
2.2.2形狀尺寸要求 13
2.3下橫梁結(jié)構(gòu) 13
2.3.1結(jié)構(gòu)形式 13
2.3.2形狀尺寸要求 13
2.4立柱結(jié)構(gòu) 14
2.4.1結(jié)構(gòu)形式 14
2.4.2形狀尺寸要求 15
2.6底座結(jié)構(gòu) 16
第3章 400T液壓機液壓系統(tǒng)的計算 17
3.1 設(shè)計主要技術(shù)參數(shù) 17
3.2 液壓缸的設(shè)計 17
3.2.1繪制液壓缸速度循環(huán)圖、負載圖 17
3.2.2 液壓缸的效率 17
3.2.3 液壓缸缸徑的計算 17
3.2.4活塞寬度的確定 18
3.2.5 缸體長度的確定 19
3.2.6缸筒壁厚的計算 19
3.2.7 活塞桿強度和液壓缸穩(wěn)定性計算 20
3.2.8缸筒壁厚的驗算 22
3.2.9 缸筒的加工要求 24
3.2.10法蘭設(shè)計 24
3.2.11 (缸筒端部)法蘭連接螺栓的強度計算 25
3.2.12密封件的選用 27
第4章 400T液壓機液壓系統(tǒng)液壓元件的選擇 29
4.1油泵的選擇 29
4.1.1 油泵工作壓力的確定 29
4.1.2 油泵流量的確定 29
4.1.3 油泵電機功率的確定 30
4.2 液壓元件的選擇 31
4.3 油管的選擇 32
第5章 驗算液壓系統(tǒng)性能 34
5.1 壓力損失的驗算及泵壓力的調(diào)整 34
5.2 液壓系統(tǒng)的發(fā)熱和溫升驗算 36
第6章 液壓站的設(shè)計 38
6.1液壓站簡介 38
6.2 油箱設(shè)計 38
6.2.1油箱有效容積的確定 38
6.2.2 油箱容積的驗算 39
6.2.3 油箱的結(jié)構(gòu)設(shè)計 41
6.3 液壓站的結(jié)構(gòu)設(shè)計 43
6.3.1 液壓泵的安裝方式 43
6.4 輔助元件 46
6.4.1 濾油器 46
6.4.2 空氣濾清器 47
6.4.3 液位計 48
6.4.4 液壓油 49
結(jié)論 50
致 謝 51
參考文獻 52
V
湖南工程大學本科畢業(yè)設(shè)計(說明書)
摘 要
液壓機(又名:油壓機)液壓機是一種利用液體靜壓力來加工金屬、塑料、橡膠、木材、粉末等制品的機械。它常用于壓制工藝和壓制成形工藝,如:鍛壓、沖壓、冷擠、校直、彎曲、翻邊、薄板拉深、粉末冶金、壓裝等等。
液壓傳動系統(tǒng)是液壓機械的一個組成部分,液壓傳動系統(tǒng)的設(shè)計要同主機的總體設(shè)計同時進行。著手設(shè)計時,必須從實際情況出發(fā),有機地結(jié)合各種傳動形式,充分發(fā)揮液壓傳動的優(yōu)點,力求設(shè)計出結(jié)構(gòu)簡單、工作可靠、成本低、效率高、操作簡單、維修方便的液壓傳動系統(tǒng)。
本人系統(tǒng)學習了液壓系統(tǒng)技術(shù)的知識,查閱了一些相關(guān)的文獻資料,在此基礎(chǔ)上,結(jié)合本人的設(shè)想和設(shè)計工作中需要解決的任務(wù),主要進行了以下幾項工作:
(1)擬定400T液壓機液壓液壓原理圖。
(2)完成400T液壓機油缸的設(shè)計。
(3)完成400T液壓機液壓站的設(shè)計。
(4)對液壓系統(tǒng)進行校核設(shè)計
(5)完成對400T液壓機整體三維建模設(shè)計
關(guān)鍵詞:400T液壓機,油缸,液壓系統(tǒng)
VI
湖南工程大學本科畢業(yè)設(shè)計(說明書)
Abstract
Hydraulic machine (also known as: hydraulic machine hydraulic machine) is a static pressure using liquid to the processing of metal, plastic, rubber, wood, powder and other products. It is often used for pressing and pressing forming process, such as: forging, stamping, cold extrusion, straightening, bending, flanging, sheet metal drawing, powder metallurgy, pressing etc..
Hydraulic drive system is a part of hydraulic machinery, hydraulic transmission system design to the overall design of the same host at the same time. To design, we must proceed from the actual situation, the organic combination of various transmission forms, give full play to the advantages of hydraulic transmission, and strive to design hydraulic transmission system has the advantages of simple structure, reliable operation, low cost, high efficiency, simple operation, convenient repair.
I am learning system of hydraulic system of technical knowledge, access to some of the relevant literature, on this basis, combined with the need to address my ideas and design work, the main work is described as follows:
(1) the development of 400T hydraulic press hydraulic principle diagram.
(2) completed the design of 400T hydraulic cylinder.
(3) to complete the design of 400T hydraulic station.
(4) were checked for the design of hydraulic system
(5) the completion of the 400T hydraulic press overall three-dimensional modeling design
Keywords: 400T hydraulic machine, hydraulic cylinder, hydraulic system
第1章 緒論
1.1 液壓機的概述
液壓機(又名:油壓機)液壓機是一種利用液體靜壓力來加工金屬、塑料、橡膠、木材、粉末等制品的機械。它常用于壓制工藝和壓制成形工藝,如:鍛壓、沖壓、冷擠、校直、彎曲、翻邊、薄板拉深、粉末冶金、壓裝等等。
它的原理是利用帕斯卡定律制成的利用液體壓強傳動的機械,種類很多。當然,用途也根據(jù)需要是多種多樣的。如按傳遞壓強的液體種類來分,有油壓機和水壓機兩大類。
水壓機產(chǎn)生的總壓力較大,常用于鍛造和沖壓。鍛造水壓機又分為模鍛水壓機和自由鍛水壓機兩種。模鍛水壓機要用模具,而自由鍛水壓機不用模具。我國制造的第一臺萬噸水壓機就是自由鍛造水壓機。
液壓機設(shè)備維修與保養(yǎng)
1.每次開機應空負荷運轉(zhuǎn)5分鐘,(冬季可加長時間,不低于30分鐘),方可正常工作。
2.新設(shè)備在使用一星期以后需將全部油路濾清一次,并清洗油箱,然后依據(jù)機器工作的負荷情況,6個月更換一次油液,清洗一次油箱。
3.使用過程中嚴禁由于系統(tǒng)發(fā)熱而將油箱蓋或注油孔打開。壓力表開關(guān)壓力調(diào)整完畢后,應關(guān)閉(禁止長期開啟壓力表開關(guān),損壞壓力表)。
1.2液壓概況
當前,液壓技術(shù)在實現(xiàn)高壓、高速、大功率、高效率、低噪聲、經(jīng)久耐用、高度集成化等各項要求方面都取得了重大的進展,在完善比例控制、數(shù)字控制等技術(shù)上也有許多新成就。此外,在液壓元件和液壓系統(tǒng)的計算機輔助設(shè)計、計算機仿真和優(yōu)化以及微機控制等開發(fā)性工作方面,更日益顯示出顯著的成績。從17世紀中葉巴斯卡提出靜壓傳遞原理、18世紀末英國制成世界上第一臺水壓機算起,也已有二三百年歷史了。近代液壓傳動在工業(yè)上的真正推廣使用只是本世紀中葉以后的事,至于它和微電子技術(shù)密切結(jié)合,得以在盡可能小的空間內(nèi)傳遞出盡可能大的功率并加以精確控制,更是近10年內(nèi)出現(xiàn)的新事物。
我國的液壓工業(yè)開始于本世紀50年代,其產(chǎn)品最初只用于機床和鍛壓設(shè)備,后來才用到拖拉機和工程機械上。自1964年從國外引進一些液壓元件生產(chǎn)技術(shù)、同時進行自行設(shè)計液壓產(chǎn)品以來,我國的液壓件生產(chǎn)已從低壓到高壓形成系列,并在各種機械設(shè)備上得到了廣泛的使用。80年代起更加速了對西方先進液壓產(chǎn)品和技術(shù)的有計劃引進、消化、吸收和國產(chǎn)化工作,以確保我國的液壓技術(shù)能在產(chǎn)品質(zhì)量、經(jīng)濟效益、人才培訓、研究開發(fā)等各個方面全方位地趕上世界水平。
1.3液壓工作原理
驅(qū)動的液壓系統(tǒng),它由油箱、濾油器、液壓泵、溢流閥、開停閥、節(jié)流閥、換向閥、液壓缸以及連接這些元件的油管組成。它的工作原理:液壓泵由電動機帶動旋轉(zhuǎn)后,從油箱中吸油。油液經(jīng)濾油器進入液壓泵,當它從泵中輸出進入壓力管后,將換向閥手柄、開停手柄方向往內(nèi)的狀態(tài)下,通過開停閥、節(jié)流閥、換向閥進入液壓缸左腔,推動活塞和工作臺向右移動。這時,液壓缸右腔的油經(jīng)換向閥和回油管排回油箱。為了克服移動工作臺時所受到的各種阻力,液壓缸必須產(chǎn)生一個足夠大的推力,這個推力是由液壓缸中的油液壓力產(chǎn)生的。要克服的阻力越大,缸中的油液壓力越高;反之壓力就越低。輸入液壓缸的油液是通過節(jié)流閥調(diào)節(jié)的,液壓泵輸出的多余的油液須經(jīng)溢流閥和回油管排回油箱,這只有在壓力支管中的油液壓力對溢流閥鋼球的作用力等于或略大于溢流閥中彈簧的預緊力時,油液才能頂開溢流閥中的鋼球流回油箱。所以,在系統(tǒng)中液壓泵出口處的油液壓力是由溢流閥決定的,它和缸中的油液壓力不一樣大。
液壓傳動有以下一些優(yōu)點:
在同等的體積下,液壓裝置能比電氣裝置產(chǎn)生出更多的動力,因為液壓系統(tǒng)中的壓力可以比電樞磁場中的磁力大出30~40倍。在同等的功率下,液壓裝置的體積小,重量輕,結(jié)構(gòu)緊湊。液壓馬達的體積和重量只有同等功率電動機的12%左右。
液壓裝置工作比較平穩(wěn)。由于重量輕、慣性小、反應快,液壓裝置易于實現(xiàn)快速啟動、制動和頻繁的換向。液壓裝置的換向頻率,在實現(xiàn)往復回轉(zhuǎn)運動時可達500次/min,實現(xiàn)往復直線運動時可達1000次/min。
液壓裝置能在大范圍內(nèi)實現(xiàn)無級調(diào)速(調(diào)速范圍可達2000),它還可以在運行的過程中進行調(diào)速。
液壓傳動易于自動化,這是因為它對液體壓力、流量或流動方向易于進行調(diào)節(jié)或控制的緣故。當將液壓控制和電氣控制、電子控制或氣動控制結(jié)合起來使用時,整個傳動裝置能實現(xiàn)很復雜的順序動作,接受遠程控制。液壓裝置易于實現(xiàn)過載保護。液壓缸和液壓馬達都能長期在失速狀態(tài)下工作而不會過熱,這是電氣傳動裝置和機械傳動裝置無法辦到的。液壓件能自行潤滑,使用壽命較長。由于液壓元件已實現(xiàn)了標準化、系列化和通用化,液壓系統(tǒng)的設(shè)計、制造和使用都比較方便。液壓元件的排列布置也具有較大的機動性。用液壓傳動來實現(xiàn)直線運動遠比用機械傳動簡單。
液壓傳動的缺點是:
液壓傳動不能保證嚴格的傳動化,這是由液壓油液的可壓縮性和泄漏等原因造成的。液壓傳動在工作過程中常有較多的能量損失(摩擦損失、泄漏損失等),長距離傳動時更是如此。液壓傳動對油溫變化比較敏感,它的工作穩(wěn)定性很易受到溫度的影響,因此它不宜在很高或很低的溫度條件下工作。為了減少泄漏,液壓元件在制造精度上的要求較高,因此它的造價較貴,而且對油液的污染比較敏感。液壓傳動要求有單獨的能源。液壓傳動出現(xiàn)故障時不易找出原因。
1.4 液壓系統(tǒng)的設(shè)計步驟與設(shè)計要求
液壓傳動系統(tǒng)是液壓機械的一個組成部分,液壓傳動系統(tǒng)的設(shè)計要同主機的總體設(shè)計同時進行。著手設(shè)計時,必須從實際情況出發(fā),有機地結(jié)合各種傳動形式,充分發(fā)揮液壓傳動的優(yōu)點,力求設(shè)計出結(jié)構(gòu)簡單、工作可靠、成本低、效率高、操作簡單、維修方便的液壓傳動系統(tǒng)。
1.5本論文研究的主要內(nèi)容
本人系統(tǒng)學習了液壓系統(tǒng)技術(shù)的知識,查閱了一些相關(guān)的文獻資料,在此基礎(chǔ)上,結(jié)合本人的設(shè)想和設(shè)計工作中需要解決的任務(wù),主要進行了以下幾項工作:
(1)擬定400T液壓機液壓液壓原理圖。
(2)完成400T液壓機油缸的設(shè)計。
(3)完成400T液壓機液壓站的設(shè)計。
(4)對液壓系統(tǒng)進行校核設(shè)計
53
53
第2章 400T液壓機整體方案的擬定
2.1 設(shè)計思路
典型的四柱液壓機主要由機身(包括上、下橫梁及立柱)、活動橫梁、頂出機構(gòu)、工作油缸、液壓傳動及電氣控制系統(tǒng)等組成。工作油缸安裝在上橫梁上,活塞與活動橫梁相連,并以立柱為導向上下移動。便于操作和裝料,液壓機一般采用立式開閉模的形式。可以用下列方式進行分類。
一、按動作方式分類
1.上壓式液壓機,其工作油缸裝于機身上部,油缸活塞從上向下移動,模具在工作臺與活動橫梁之間受壓。由于油缸裝于機器上方,工作臺(下橫梁)是固定的,裝料可在工作臺上進行,操作方便,而且容易實現(xiàn)快速下行,所以應用非常廣泛,國產(chǎn)塑料液壓機基本是這種類型。
2.下壓式液壓機如(下圖)所示,工作油缸裝在機身下部,上橫梁固定在立柱上。油缸柱塞推動活動橫梁上升,給模具施壓。這種液壓機重心位置低,穩(wěn)定性好,油缸裝在機身下部,可避免漏油污染制品。層壓塑料一般采用下壓式液壓機。
3.特種液壓機角式液壓機、層壓式液壓機、鑄壓機等屬于這種類型。二、按機身結(jié)構(gòu)分類
1.四柱液壓機由四根立柱、上下橫梁、機座等組成穩(wěn)定的機身。這種液壓機工作空間大,便于四周觀察和接近模具,結(jié)構(gòu)簡單,工藝適應性較強。但其承受偏心載荷的能力較差,在偏心載荷下活動橫梁與工作臺間易產(chǎn)生傾斜和位移。
2.框式液壓機其機身是焊接或鑄造而成的框架結(jié)構(gòu),剛度高。
三、按操縱方式分類
1.手動液壓機通過手工操縱分壓器來完成壓制過程的每一個工序。模具一般不固定在液壓機上,裝卸模均在機外進行。
2.半自動液壓機模具固定在液壓機上,壓制程序所需的時間由定時機構(gòu)來控制,僅手工給模具加料。
3.自動液壓機從物料稱量、加料到取出制品和清理模具等均自動進行,因而勞動強度小,生產(chǎn)效率高,但制造復雜,一般僅用于大量定型制品的生產(chǎn)。
2.2擬定液壓原理圖
1、 主液壓泵(恒功率輸出液壓泵),2、齒輪泵,3、電機,4、濾油器,5、7、8、22、25、溢流閥,6、18、24、電磁換向閥,9、21、電液壓換向閥,10、壓力繼電器,11、單向閥,12、電接觸壓力表,13、19、液控單向閥,14、液動換向閥,15、順序閥,16上液壓缸,17、順序閥,20、下液壓缸,23節(jié)流器,26、行程開關(guān)
2.3 動作分析
A、啟動:電磁鐵全斷電,主泵卸荷。
主泵(恒功率輸出)→電液換向閥9的M型中位→電液換向閥21的K型中位→T
B、液壓缸16活塞快速下行: 2YA、5YA通電,電液換向閥9右位工作,道通控制油路經(jīng)電磁換向閥18,打開液控單向閥19,接通液壓缸16下腔與液控單向閥19的通道。
進油路:主泵(恒功率輸出)→電液換向閥9→單向閥11→液壓缸16上腔
回油路:液壓缸16下腔→電液換向閥9→電液換向閥21的K型中位→T
液壓缸活塞依靠重力快速下行:大氣壓油→吸入閥13→液壓缸16上腔的負壓空腔
C.液壓缸16活塞接觸工件,開始慢速下行(增壓下行):
液壓缸活塞碰行程開關(guān)2XK使5YA斷電,切斷液壓缸16下腔經(jīng)液控單向閥19快速回油通路,上腔壓力升高,同時切斷(大氣壓油 →吸入閥13 →上液壓缸16上腔)吸油路。
進油路:主泵(恒功率輸出)→電液換向閥9→單向閥11→液壓缸16上腔
回油路:液壓缸16下腔→順序閥17→電液換向閥9→電液換向閥21的K型中位→T
D、保壓:
液壓缸16上腔壓力升高達到預調(diào)壓力,電接觸壓力表12發(fā)出信息,2YA斷電,液壓缸16進口油路切斷,(單向閥11 和吸入閥13的高密封性能確保液壓缸16活塞對工件保壓,利用液壓缸16上腔壓力很高,推動液動換向閥14下移,打開外控順序閥15,防止控制油路使吸入閥1誤動而造成液壓缸16上腔卸荷) 當液壓缸16上腔壓力降低到低于電接觸壓力表12調(diào)定壓力,電接觸壓力表12又會使2YA通電,動力系統(tǒng)又會再次向液壓缸16上腔供應壓力油……。
主泵(恒功率輸出)主泵→電液換向閥9的M型中位→電液換向閥21的K型中位→T,主泵卸荷 。
E、保壓結(jié)束、液壓缸16上腔卸荷后:
保壓時間到位,時間繼電器發(fā)出信息, 1YA通電(2TA斷電),液壓缸16上腔壓力很高,推動液動換向閥14下移,打開外控順序閥15,主泵1→電液壓換向閥9的大部分油液經(jīng)外控順序閥15流回油箱,壓力不足以立即打開吸入閥13通油箱的通道,只能先打開吸入閥13的卸荷閥(或叫卸荷閥的卸荷口),實現(xiàn)液壓缸16上腔(只有極小部分油液經(jīng)卸荷閥口回油箱)先卸荷,后通油箱的順序動作,此時:
主泵1大部分油液→電液壓換向閥9→外控順序閥15→T
F、液壓缸16活塞快速上行:
液壓缸16上腔卸壓達到吸入閥13開啟的壓力值時,液動換向閥14復位,外控制順序閥15關(guān)閉,切斷主泵1大部分油液→電液換向閥9→外控順序閥15→T的油路,實現(xiàn):
進油路:主泵1→電液換向閥9→液控單向閥19→液壓缸16下腔
回油路:液壓缸16上腔→吸入閥13→T
G、頂出工件:
液壓缸16活塞快速上行到位,碰行程開關(guān)1XK,1YA斷電,電液換向閥9復位,4YA通電,電液換向閥21右位工作
進油路:主泵1→電液換向閥9的M型中位→電液換向閥21→液壓缸20下腔
回油路:液壓缸20上腔→電液換向閥21→T
H、頂出活塞退回:3YA通電,4YA斷電,電液換向閥21左位工作
進油路:主泵1→電液換向閥9的M型中位→電液換向閥21→液壓缸20有桿腔
回油路:液壓缸20無桿腔→電液換向閥21→T
K、壓邊浮動拉伸:
薄板拉伸時,要求頂出液壓缸20無桿腔保持一定的壓力,以便液壓缸20活塞能隨液壓缸16活塞驅(qū)動動模一同下行對薄板進行拉伸,4YA通電,電液壓換向閥21右位工作,6YA通電,電磁閥24工作,溢流閥25調(diào)節(jié)液壓缸20無桿腔油墊工作壓力。
進油路:主泵1→電液換向閥9的M型中位→電液換向閥21→液壓缸20無桿腔
吸油路:大氣壓油→電液壓換向閥21→填補液壓缸20有桿腔的負壓空腔
圖2-1 主機結(jié)構(gòu)圖
30T沖壓機機架采用三梁四柱式結(jié)構(gòu),其主要特點是加工工藝性較其他類型結(jié)構(gòu)簡單。圖2-1為立式單缸三梁四柱式結(jié)構(gòu),他的機身是由上橫梁、滑塊、下橫梁、四根立柱和加熱板組成,機身由底座支撐。工作缸安裝在上橫梁內(nèi),活動橫梁與工作缸的活塞聯(lián)接成一整體,以立柱為導向上下運動,并傳遞工作缸內(nèi)產(chǎn)生之力量,對磨具進行沖壓加工。由于機身聯(lián)接成一整體框架,故機身承受整個工作力量?;顒訖M梁與工作缸的活塞聯(lián)接成一整體,以立柱為導向上下運動,并傳遞工作缸內(nèi)產(chǎn)生之力量,對磨具進行沖壓加工。由于機身聯(lián)接成一整體框架,故機身承受整個工作力量。
2.1上橫梁結(jié)構(gòu)
2.1.1結(jié)構(gòu)形式
上橫梁位于立柱上部,用于安裝工作缸,承受工作缸的反作用力。亦可安裝回程缸及其他輔助裝置。由于主機規(guī)格是30T,屬于小型沖壓機,上橫梁不設(shè)計成上下封閉的廂式結(jié)構(gòu),直接采用45鋼鋼板結(jié)構(gòu),便于加工和生產(chǎn)。
2.1.2形狀尺寸要求
上橫梁通過立柱聯(lián)接成機身上半部,并安裝工作油缸。為使其組成的空間合乎要求,以及活塞運行平穩(wěn),因此要求上橫梁安裝油缸孔的軸線與安裝油缸的臺肩平面應垂直,上橫梁與調(diào)節(jié)螺母接觸面與主油缸臺肩接觸應平行,以及立柱穿過孔的上下平面應平行等等。結(jié)合生產(chǎn)情況,具體要求為:
1. 安裝主油缸孔的軸線與油缸臺肩貼合平面不垂直度允差≤0.06/1000毫米。
2. 調(diào)節(jié)螺母接觸平面與油缸臺肩貼合平面的不平行度允差≤0.05/1000毫米。
3. 鎖緊螺母接觸面與調(diào)節(jié)螺母接觸面(立柱穿過孔的上平面與下平面)間不平度允差≤0.16/1000毫米。
4. 油缸鎖緊螺母平面與油缸臺肩貼合平面間不平行度允差≤0.12/1000毫米。
5. 與油缸外圓配合公差為H7/f8.
6. 立柱孔尺寸一般比立柱插入端直徑大2-3毫米。
2.1.3上橫梁與油缸的聯(lián)接方式
依靠法蘭盤固定油缸,如圖2-2所示.此方法采用聯(lián)接零件來固定油缸的位置。當油缸加壓時,油缸臺肩傳遞反作用力于橫梁,法蘭盤不受反作用力的作用,只有當油缸回程工作時,回程力作用于法蘭盤上。故法蘭盤的強度只需滿足回程力要求即可。油缸為柱塞式時,法蘭盤僅承受部件的重量。
2.2滑塊結(jié)構(gòu)
活動橫梁的主要作用為:與主油缸活塞桿聯(lián)接傳遞沖壓機的壓力;通過導向套沿立柱導向面上下往復運動;安裝與固定模具及工具等。因此需要有較好的強度、剛度及導向結(jié)構(gòu)。
圖2-2 用法蘭盤固定的結(jié)構(gòu)
2.2.1結(jié)構(gòu)形式
圖2-3 滑塊結(jié)構(gòu)圖
活動橫梁選用材料與上橫梁、下橫梁相同,常采用同樣的材料來制造,以使毛坯的制造工藝相類似、便于制造。
活動橫梁的結(jié)構(gòu)設(shè)計除考慮導向精度要求外,還應根據(jù)壓制工藝中的承載要求來決定。
根據(jù)壓制工藝性質(zhì),導向部分應有一定的高度,以保證足夠的精度。一般情況下,導向部分高度不應小于活塞行程的二分之一。
2.2.2形狀尺寸要求
活動橫梁是沖壓機主要運動部件,為保證沖壓機符合精度要求,因此,要求四立柱導向套 孔軸線應相互平行,它應與聯(lián)接活塞桿孔的中心線平行;上述這些孔軸線都應與活動橫梁下平面相垂直;與活塞桿接觸平面對下平面亦可要求平行等。結(jié)合生產(chǎn)情況具體要求為:
1. 聯(lián)接活塞桿孔軸線與四立柱孔軸應互相平行,其不平度允差≤0.10/1000毫米。
2. 活動橫梁下平面不平直度,按JB1293-73標準允差為≤0.05/1000毫米。
3. 聯(lián)接活塞桿孔軸線與四立柱孔軸線對下平面不垂直度允差≤0.06-0.10/1000毫米。
4. 下平面對上平面(與活塞桿貼合平面)不平行度允差≤0.05/1000毫米。
5. 四立柱孔中心距公差,前后、左右均為≤±0.02毫米。
6. 四立柱孔與導套外圓配合精度為H7/g8,中心孔與活塞桿外圓配合精度為H7/f8。
2.3下橫梁結(jié)構(gòu)
2.3.1結(jié)構(gòu)形式
下橫梁是主機的安裝基礎(chǔ)。臺面上固定加熱板,工作中承受機器本體的重量及全部載荷。下橫梁所選用的材料以及其結(jié)構(gòu)形式與上橫梁相同。圖2-4為下橫梁結(jié)構(gòu)圖,材料選用45鋼。
2.3.2形狀尺寸要求
下橫梁是整機的基礎(chǔ)性零件,是安裝加熱板的基準。因此,對工作臺面的不平度、各部件安裝定位基面均應有必要地技術(shù)要求。根據(jù)生產(chǎn)情況,具體要求為:
1. 工作臺臺面不平直度,按JB1293-73標準允差≤0.05/1000毫米。
2. 立柱鎖緊螺母之貼合平面與工作臺臺面間不平行度允差小于0.16/1000毫米。
3. 立柱孔尺寸一般比立柱插入端直徑大2-3毫米左右。
2.4立柱結(jié)構(gòu)
立柱是四柱式?jīng)_壓機重要的支撐件和受力件,同時又是活動橫梁的導向基準。因此,立柱應有足夠的強度與剛度,導向表面應有足夠的精度、光潔度和必要地硬度。
圖2-4 下橫梁結(jié)構(gòu)圖
2.4.1結(jié)構(gòu)形式
立柱與上橫梁、工作臺的聯(lián)接方式是表明立柱結(jié)構(gòu)的主要特征。在選擇立柱結(jié)構(gòu)時,應考慮到它與上橫梁、工作臺間應可靠預緊、安裝方便和便于調(diào)整機器的精度。圖2-5為立柱結(jié)構(gòu),兩梁都用調(diào)節(jié)螺母支承,用鎖緊螺母上下加以鎖緊。
四螺母結(jié)構(gòu)組成零件多。由于調(diào)節(jié)螺母起立柱臺肩的支撐作用,且可調(diào)整兩梁的支撐距離,對立柱有關(guān)軸向尺寸要求不嚴格,緊固較容易。但對立柱螺紋精度(與立柱軸線的平行度)以及調(diào)整螺母精度(調(diào)節(jié)螺母的螺紋對于上下橫梁貼合面垂直度)要求較高。機器精度調(diào)整較麻煩。
2.4.2形狀尺寸要求
立柱為沖壓機的重要零件,是活動橫梁的導向基準。結(jié)合生產(chǎn)情況,具體要求為:
1. 立柱導向面軸線不平直度允差≤0.05/1000毫米。
2. 材料選用45鍛鋼件。毛坯應正火處理,消除鍛造過程的內(nèi)應力。
3. 立柱導向表面應進行熱處理,表面硬度不低于HB235,也可進行表面鍍硬鉻處理,鍍層厚度為0.02-0.04毫米。
圖2-5 立柱結(jié)構(gòu)圖
2.6底座結(jié)構(gòu)
底座安裝于工作臺下部,與基礎(chǔ)相聯(lián)。底座僅承受機器的總重量。底座高度由正常壓制制件時人的操作高度來定。底座材料。主要考慮到外形的美觀,對精度無要求。如圖2-6所示。
圖2-6 底座結(jié)構(gòu)圖
第3章 400T液壓機液壓系統(tǒng)的計算
3.1 設(shè)計主要技術(shù)參數(shù)
公稱力:4000kN:最大工作壓力:25MPa;開口高度:1400mm ;滑塊最大行程:800mm:工作臺面有效尺寸(長X寬):1200mmX1260mm。
3.2 液壓缸的設(shè)計
3.2.1繪制液壓缸速度循環(huán)圖、負載圖
1、選取參數(shù)
取動摩擦系數(shù)fd=0.1 ,靜摩擦系數(shù)fj=0.2 ,η缸=0.95,
V快=100mm/s , V工=10mm/s,令起動時間不超過0.2秒,
3.2.2 液壓缸的效率
液壓缸的機械效率
3.2.3 液壓缸缸徑的計算
內(nèi)徑D可按下列公式初步計算:
液壓缸的負載為推力
=463mm 式(3-1)
式中 —液壓缸實際使用推力4000(KN);
—液壓缸的總效率,一般取=07~09;計算=0.8;
—液壓缸的供油壓力,一般為系統(tǒng)壓力(MPa)
本次設(shè)計中液壓缸已知系統(tǒng)壓力=25MPa;
根據(jù)式(3-1)得到內(nèi)徑:=500mm
查缸筒內(nèi)徑系列/mm(GB/T 2348-1993)可以取為500mm。
表4.1 液壓缸內(nèi)徑系列 mm
8
10
12
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
活塞桿外徑:
查《液壓傳動與控制手冊》根據(jù)桿徑比d/D,一般的選取原則是:當活塞桿受拉時,一般選取d/D=0.3-0.5,當活塞桿受壓時,一般選取d/D=0.5-0.7。本設(shè)計我選擇d/D=0.7,即d=0.55D=0.7×500=350mm。根據(jù)活塞桿直徑標準取d=360mm.
表3-1 活塞桿直徑系列
活塞桿直徑系列/mm
(GB/T 2348-1993)
4、5、6、8、10、12、16、18、20、22、25、28、32、36、40、45、50、56、63、70、80、90、100、110、125、140、160、180、200、220、250、280、320、360
3.2.4活塞寬度的確定
由于活塞在液壓力的作用下沿缸筒往復滑動,因此,它與缸筒的配合應適當,既不能過緊,也不能間隙過大。配合過緊,不僅使最低啟動壓力增大,降低機械效率,而且容易損壞缸筒和活塞的配合表面;間隙過大,會引起液壓缸內(nèi)部泄露,降低容積效率,使液壓缸達不到要求的設(shè)計性能。
活塞的寬度一般取=(0.6-1.0)
即=(0.6-1.0)×500=(300-500)mm
取=350mm
3.2.5 缸體長度的確定
液壓缸缸體內(nèi)部的長度應等于活塞的行程與活塞寬度的和。缸體外部尺寸還要考慮到兩端端蓋的厚度,一般液壓缸缸體的長度不應大于缸體內(nèi)徑的20-30倍。
3.2.6缸筒壁厚的計算
在中、低壓系統(tǒng)中,液壓缸的壁厚基本上由結(jié)構(gòu)和工藝上的要求確定,壁厚通常都能滿足強度要求,一般不需要計算。但是,當液壓缸的工作壓力較高和缸筒內(nèi)徑較大時,必須進行強度校核。
當時,稱為薄壁缸筒,按材料力學薄壁圓筒公式計算,計算公式為
式(3-2)
式中,—缸筒內(nèi)最高壓力;
—缸筒材料的許用壓力。=, 為材料的抗拉強度,n為安全系數(shù),當時,一般取。液壓缸缸筒材料采用45鋼,則抗拉強度:
σb=600MPa
安全系數(shù)n按《液壓傳動與控制手冊》P243表2—10,取n=5。
則許用應力[δ]==120MPa
當時,按式(3-3)計算
(該設(shè)計采用45鋼管) 式(3-3)
根據(jù)缸徑查手冊預取=50
此時 =0.1
最高允許壓力一般是額定壓力的1.5倍,根據(jù)給定參數(shù),所以:
=251.5=37.5MP
=115
滿足要求,就取壁厚為120mm。
3.2.7 活塞桿強度和液壓缸穩(wěn)定性計算
A.活塞桿強度計算
活塞桿的直徑按下式進行校核
式中,為活塞桿上的作用力;
· 為活塞桿材料的許用應力,=,n一般取1.40。
(3-4)
式中 ————許用應力;(Q235鋼的抗拉強度為375-500MPa,取400MPa,為位安全系數(shù)取5,即活塞桿的強度適中)
=63.69mm
d取360 mm大于63 mm 滿足要求.
B.液壓缸穩(wěn)定性計算
活塞桿受軸向壓縮負載時,它所承受的力不能超過使它保持穩(wěn)定工作所允許的臨界負載,以免發(fā)生縱向彎曲,破壞液壓缸的正常工作。的值與活塞桿材料性質(zhì)、截面形狀、直徑和長度以及液壓缸的安裝方式等因素有關(guān)。若活塞桿的長徑比且桿件承受壓負載時,則必須進行液壓缸穩(wěn)定性校核?;钊麠U穩(wěn)定性的校核依下式進行
式中,為安全系數(shù),一般取=2~4。
a.當活塞桿的細長比時
b.當活塞桿的細長比時
式中,為安裝長度,其值與安裝方式有關(guān),見表1;為活塞桿橫截面最小回轉(zhuǎn)半徑,;為柔性系數(shù),其值見表3-2; 為由液壓缸支撐方式?jīng)Q定的末端系數(shù),其值見表1;為活塞桿材料的彈性模量,對鋼??;為活塞桿橫截面慣性矩;為活塞桿橫截面積;為由材料強度決定的實驗值,為系數(shù),具體數(shù)值見表3-3。
表3-2液壓缸支承方式和末端系數(shù)的值
支承方式
支承說明
末端系數(shù)
一端自由一端固定
1/4
兩端鉸接
1
一端鉸接一端固定
2
兩端固定
4
表3-3 、、的值
材料
鑄鐵
5.6
1/1600
80
鍛鐵
2.5
1/9000
110
鋼
4.9
1/5000
85
c.當時,缸已經(jīng)足夠穩(wěn)定,不需要進行校核。
此設(shè)計安裝方式中間固定的方式,此缸已經(jīng)足夠穩(wěn)定,不需要進行穩(wěn)定性校核。
3.2.8缸筒壁厚的驗算
下面從以下三個方面進行缸筒壁厚的驗算:
A液壓缸的額定壓力值應低于一定的極限值,保證工作安全:
式(3-4)
根據(jù)式(3-4)得到:
顯然,額定油壓==25MP,滿足條件;
B為了避免缸筒在工作時發(fā)生塑性變形,液壓缸的額定壓力值應與塑性變形壓力有一定的比例范圍:
式(3-5)
式(3-6)
先根據(jù)式(3-6)得到:
=41.21
再將得到結(jié)果帶入(3-5)得到:
顯然,滿足條件;
C耐壓試驗壓力,是液壓缸在檢查質(zhì)量時需承受的試驗壓力。在規(guī)定的時間內(nèi),液壓缸在此壓力 下,全部零件不得有破壞或永久變形等異?,F(xiàn)象。
各國規(guī)范多數(shù)規(guī)定:
當額定壓力時
(MPa)
D為了確保液壓缸安全的使用,缸筒的爆裂壓力應大于耐壓試驗壓力:
(MPa) 式(3-7)
因為查表已知=596MPa,根據(jù)式(3-7)得到:
至于耐壓試驗壓力應為:
因為爆裂壓力遠大于耐壓試驗壓力,所以完全滿足條件。
以上所用公式中各量的意義解釋如下:
式中: —缸筒內(nèi)徑();
—缸筒外徑();
—液壓缸的額定壓力()
—液壓缸發(fā)生完全塑形變形的壓力();
—液壓缸耐壓試驗壓力();
—缸筒發(fā)生爆破時壓力();
—缸筒材料抗拉強度();
—缸筒材料的屈服強度(;
—缸筒材料的彈性模量();
—缸筒材料的泊桑系數(shù)
鋼材:=0.3
3.2.9 缸筒的加工要求
缸筒內(nèi)徑采用H7級配合,表面粗糙度為0.16,需要進行研磨;
熱處理:調(diào)制,HB240;
缸筒內(nèi)徑的圓度、錐度、圓柱度不大于內(nèi)徑公差之半;
剛通直線度不大于0.03mm;
油口的孔口及排氣口必須有倒角,不能有飛邊、毛刺;
在缸內(nèi)表面鍍鉻,外表面刷防腐油漆。
3.2.10法蘭設(shè)計
液壓缸的端蓋形式有很多,較為常見的是法蘭式端蓋。本次設(shè)計選擇法蘭式端蓋
(缸筒端部)法蘭厚度根據(jù)下式進行計算:
式(3-8)
式中, -法蘭厚度(m);
—密封環(huán)內(nèi)經(jīng)(m);
密封環(huán)外徑(m);
系統(tǒng)工作壓力(pa);=25MPa
附加密封力(Pa);值取其材料屈服點353MPa;
螺釘孔分布圓直徑(m);
密封環(huán)平均直徑(m);
法蘭材料的許用應力(Pa);[]=/n=353/5=70.6MPa
—法蘭受力總合力(m)
所以
3.2.11 (缸筒端部)法蘭連接螺栓的強度計算
連接圖如下:
圖3-1缸體端部法蘭用螺栓連接
1-前端蓋;2-缸筒
螺栓強度根據(jù)下式計算:
螺紋處的拉應力:
(MPa) 式(3-9)
螺紋處的剪應力
(MPa) 式(3-10)
合成應力
(MPa) 式(3-11)
式中, —液壓缸的最大負載,=A,單桿時,雙桿是
—螺紋預緊系數(shù),不變載荷=1.25~1.5,變載荷=2.5~4;
—液壓缸內(nèi)徑;
—缸體螺紋外徑;
—螺紋內(nèi)經(jīng);
—螺紋內(nèi)摩擦因數(shù),一般取=0.12;變載荷取=2.5~4;
—材料許用應力,,為材料的屈服極限,n為安全系數(shù),一般取n=1.2~1.5;
Z—螺栓個數(shù)。
最大推力為:
使用4個螺栓緊固缸蓋,即:=4
螺紋外徑和底徑的選擇:
=10mm =8mm
系數(shù)選擇:選取=1.3=0.12
根據(jù)式(3-9)得到螺紋處的拉應力為:
=
根據(jù)式(3-10)得到螺紋處的剪應力為:
根據(jù)式(3-11)得到合成應力為:
==367.6MPa
由以上運算結(jié)果知,應選擇螺栓等級為12.9級;
查表的得:抗拉強度極限=1220MP;屈服極限強度=1100MP;
不妨取安全系數(shù)n=2
可以得到許用應力值:[]=/n=1100/2=550MP
證明選用螺栓等級合適。
3.2.12密封件的選用
A.對密封件的要求
在液壓元件中,液壓缸的密封要求是比較高的,特別是一些特殊液壓缸,如擺動液壓缸等。液壓缸不僅有靜密封,更多的部位是動密封,而且工作壓力高,這就要求密封件的密封性能要好,耐磨損,對溫度的適應范圍大,要求彈性好,永久變形小,有適當?shù)臋C械強度,摩擦阻力小,容易制造和裝拆,能隨壓力的升高而提高密封能力和利于自動補償磨損。密封件一般以斷面形狀分類,有O形、Y形、U形、V形和Yx形等。除O形外,其他都屬于唇形密封件。
B. O形密封圈的選用
液壓缸的靜密封部位主要有活塞內(nèi)孔與活塞桿、支撐座外圓與缸筒內(nèi)孔、端蓋與缸體端面等處。靜密封部位使用的密封件基本上都是O形密封圈。
C.動密封部位密封圈的選用
由于O型密封圈用于往復運動存在起動阻力大的缺點,所以用于往復運動的密封件一般不用O形圈,而使用唇形密封圈或金屬密封圈。
液壓缸動密封部位主要有活塞與缸筒內(nèi)孔的密封、活塞桿與支撐座(或?qū)蛱祝┑拿芊獾取?
活塞環(huán)是具有彈性的金屬密封圈,摩擦阻力小,耐高溫,使用壽命長,但密封性能差,內(nèi)泄漏量大,而且工藝復雜,造價高。對內(nèi)泄漏量要求不嚴而要求耐高溫的液壓缸,使用這種密封圈較合適。
V形圈的密封效果一般,密封壓力通過壓圈可以調(diào)節(jié),但摩擦阻力大,溫升嚴重。因其是成組使用,模具多,也不經(jīng)濟。對于運動速度不高、出力大的大直徑液壓缸,用這種密封圈較好。
U形圈雖是唇形密封圈,但安裝時需用支撐環(huán)壓住,否則就容易卷唇,而且只能在工作壓力低于10MPa時使用,對壓力高的液壓缸不適用。
比較而言,能保證密封效果,摩擦阻力小,安裝方便,制造簡單經(jīng)濟的密封圈就屬Yx型密封圈了。它屬于不等高雙唇自封壓緊式密封圈 ,分軸用和孔用兩種。
綜上,所以本設(shè)計選用Yx型圈,聚氨酯和聚四氟乙烯密封材料組合使用,可以顯著提高密封性能:
a.降低摩擦阻力,無爬行現(xiàn)象;
b.具有良好的動態(tài)和靜態(tài)密封性,耐磨損,使用壽命長;
c.安裝溝槽簡單,拆裝簡便。
這種組合的特別之處就是允許活塞外園和缸筒內(nèi)壁有較大間隙,因為組合式密封的密封圈能防止擠入間隙內(nèi),降低了活塞與缸筒的加工要求,密封方式圖如下:
圖3-2 密封方式圖
第4章 400T液壓機液壓系統(tǒng)液壓元件的選擇
4.1油泵的選擇
4.1.1 油泵工作壓力的確定
油泵工作壓力為:
=P+∑△P 式(4-1)
可知工進階段液壓缸壓力最大,由于在400T液壓機液壓系統(tǒng)中,壓力所經(jīng)過的閥的數(shù)量不多,故壓力損失∑△P不大,參照<<液壓傳動>>表1-10選取∑△P=0.5MP。油缸最大工作壓力P可根據(jù)表3-1取為7.1MP于是油缸工作壓力即為:
=25+0.5=25.5MPA
所選油泵的額定工作壓力應為:
=1.25=1.25×25.5=31.875MPA
根據(jù)上面計算的壓力和流量,查產(chǎn)品樣本,選用申液SV2010-4P9P1020(29L+13.1/r)泵,額定轉(zhuǎn)速1500r/min。
4.1.2 油泵流量的確定
油泵流量為:
≥K(∑Q)=1.1×150=165L/min (4-2)
選用的油泵為YYB-BC165/48B雙聯(lián)葉片油泵
4.1.3 油泵電機功率的確定
系統(tǒng)為雙泵供油系統(tǒng),兩個泵同時向系統(tǒng)供油;工進時,小泵向系統(tǒng)供油,大泵卸載[1]。
雙聯(lián)油泵:大泵流量43升/分,小泵流量19升/分
下面分別計算所需要的電動機功率P。
考慮到調(diào)速閥所需最小壓力差。壓力繼電器可靠動作需要壓力差。因此工進時小泵的出口壓力為:
。而大泵的卸載壓力取。(小泵的總效率=0.565,大泵的總效率=0.3)。
雙聯(lián)油泵:大泵流量43升/分,小泵流量19升/分
電動機功率為:
綜合所需功率據(jù)此查樣本選用Y160ML-4-B5 15KW異步電動機,電動機功率為15KW(躍進廠)。
4.2 液壓元件的選擇
根據(jù)液壓閥在系統(tǒng)中的最高工作壓力與通過該閥的最大流量,可選出這些元件的型號及規(guī)格[1]。本例所有閥的額定壓力都為,額定流量根據(jù)各閥通過的流量,確定為10L/min,25L/min和63L/min三種規(guī)格,所有元件的規(guī)格型號列于表5-1中,過濾器按液壓泵額定流量的兩倍選取吸油用線隙式過濾器。
表4-1 液壓元件明細表
電動機1
Y160ML-4-B5 15KW
臺
2
躍進廠
液壓泵1
SV2010-4P9P1020(29L+13.1/r)
臺
2
申液
聯(lián)軸器1
臺
2
鐘形罩1
160ML-B5-SV2010-P4P9P020定制
2
鐘形罩2
Y100L-4-CBE
1
回油壓力表
YN-60 I 1.6MPa
徑向普通耐振
2
上海宜川
閥箱壓力表
YN-60 I 16MPa
徑向普通耐振
10
上海宜川