購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
附錄1 譯 文
摘 要:錘片磨損會破壞錘片式粉碎機轉(zhuǎn)子的平衡,加劇轉(zhuǎn)子振動。該文的研究目的是基于虛擬樣機技術(shù)探討錘片磨損對轉(zhuǎn)子振動的影響規(guī)律。采用MDT和vN4D建立了SFSP112×30型錘片式粉碎機轉(zhuǎn)子的虛擬樣機模型,對不同錘片磨損情況下粉碎機轉(zhuǎn)子的振動進行了仿真。結(jié)果表明:錘片磨損后,轉(zhuǎn)子振動頻率組成變化不大,而振動幅值和強度變化較大,其中低頻段振動強度增強,高頻段振動強度降低;導(dǎo)致轉(zhuǎn)子質(zhì)心徑向偏移的錘片磨損使轉(zhuǎn)子振動幅值和強度均變大,而導(dǎo)致質(zhì)心軸向偏移的磨損對轉(zhuǎn)子振動影響不大;同樣由于轉(zhuǎn)子質(zhì)心的徑向偏移,轉(zhuǎn)子受迫振動頻率強度增加較多。因此,為了降低子運轉(zhuǎn)時的振動,最好避免轉(zhuǎn)子質(zhì)心發(fā)生徑向偏移。
關(guān)鍵詞:錘片式粉碎機;錘片;虛擬樣機(VP);磨損;振動
簡 介
能從谷物中的營養(yǎng)提取出來的飼料粉碎機已經(jīng)發(fā)展很多年了。但是因為他只能處理特殊的原料,像谷類食品和礦石,所以除了丕林島(地名)的少數(shù)人在研究飼料粉碎機外,很少人去研究他。盡管飼料粉碎機已經(jīng)可以解決很多問題,比如振動、噪音、堵塞,用他特有的結(jié)構(gòu)來解決問題,而且可以連續(xù)工作并達到一定的精度。
雖然一些方法,比如比較低的回轉(zhuǎn)速度,寬的轉(zhuǎn)子直徑被采用,好轉(zhuǎn)了他的性能,但是那些問題不能扯得的被解決。最近,分析了飼料粉碎機在工作狀態(tài)下轉(zhuǎn)子的轉(zhuǎn)速,旋轉(zhuǎn)的速度能被粉碎機控制在稍低或者稍高的程度。轉(zhuǎn)子的轉(zhuǎn)速在正常工作下都是不變的,除了在長時間工作摩擦后。由于錘片的排列或者是其他的因素,產(chǎn)生轉(zhuǎn)子的離心力不固定,所以錘片的磨損是不均衡的,因此,我們要學(xué)習(xí)掌握錘片要磨損時候的特征,為了使粉碎機振動保持穩(wěn)定。
實質(zhì)上的原型技術(shù)(VP)是一個用cad加工程序代替真實的模型,為了測試這種產(chǎn)品的特性和特征。這就像電腦的硬件和軟件的發(fā)展,網(wǎng)絡(luò)技術(shù)通過vp技術(shù)開展起來。同時,傳統(tǒng)的模擬技術(shù)對VP的認識理解很有基礎(chǔ)。除了高科技種田,VP技術(shù)還適用于日益發(fā)展的農(nóng)業(yè)機械設(shè)計。作者努力的將VP技術(shù)應(yīng)用于工程分析技術(shù)。
對于飼料粉碎機中轉(zhuǎn)子單一的動力模型,被用來發(fā)展轉(zhuǎn)子動力學(xué),轉(zhuǎn)子有效的運動模型被MDT和VN4D當(dāng)做虛擬原型來用。VP技術(shù)模擬不同情況的磨損下,研究轉(zhuǎn)子轉(zhuǎn)動時的震動和錘片磨損的分析。
1.單一化轉(zhuǎn)子的模型
SFSP112×30的轉(zhuǎn)子的錘片被均勻的排列,它是由定子、滾球軸承、錘片、軸子組成,最大轉(zhuǎn)速為1480r/min。所以它的最大頻率應(yīng)該是1480/60=24.6Hz。
圖一 SFSP112×30的轉(zhuǎn)子圖表
基于集總的單一化原則叁數(shù)方法 被單一化的模型應(yīng)該有同樣的總質(zhì)量,瞬間的轉(zhuǎn)動慣量有最初的質(zhì)心位置決定。粉碎機的轉(zhuǎn)子被單一化的分別運行在六個圓盤里。在這系統(tǒng)里,每一個自我排列的定子,會在壓力的作用下自己運行到指定的位置,能夠計算出他們最后的位置。
2.轉(zhuǎn)子的虛擬原型
轉(zhuǎn)子的3D模型需要建立在一個MDT的三維建模軟件上,VP的技術(shù)原本是用來實現(xiàn)Vn4D的,其中包括重要的參數(shù)從轉(zhuǎn)子的發(fā)動機的功率。一些重要參數(shù)列出如下
(1)定子連接上,平鍵連接被強固連接完全代替;
(2)強固連接也被用來連接圓盤;
(3)因為軸子被用來限制錘片的位置,所以強固連接被用來限制軸子和錘片的位置;
(4)在錘片和螺釘通過強固連接,來限制彼此的旋轉(zhuǎn)動作,來完成軸的夾緊;
(5)球軸承被軸襯所代替,軸襯確定參數(shù)。
(6)電動機的限制被增加到左邊的結(jié)束,他的參數(shù)、轉(zhuǎn)力矩輸出功能被設(shè)置在平衡的感電電動機上
3.VP技術(shù)的模擬分析
為了要加速模擬速度,唯一的沒有外部的那些環(huán)境應(yīng)用的負荷被模擬,同時,粉碎機需要非常短的加速時間,沒有負載的環(huán)境是不可能的。粉碎機需要加速的這段時間內(nèi),轉(zhuǎn)子跑到他的位置上。 錘片的排列的結(jié)果,在研磨中起作用的軸通常用不同種型號,錘片通過定子的排列的長短來確定。因此質(zhì)心上的轉(zhuǎn)子偏離最初的位置。根據(jù)概率公差,質(zhì)心的方向也就是軸運動的方向,磨損的方向是在情理之中的。此外,和磨損情形對比,錘片的磨損也是模擬的。
根據(jù)模擬的結(jié)果列出表1
磨損的圖被展現(xiàn)在圖4上,第四個錘片和軸子被標在Ⅰ和Ⅳ上,當(dāng)從軸向觀察,每組的錘片,每組都標著1到8平行的定子,在圖4A磨損程度每個錘片是平等的。圖 4B條的磨損程度,每個錘片的一組是不平等的,而相應(yīng)的錘片組有Ⅰ ,Ⅲ 同樣的磨損程度。至于Fig.4c和Fig.4d的磨損程度的錘片是不相同完全。圖5顯示振動加速度和動力頻譜圖的球軸承收集在這一過程中,該轉(zhuǎn)子轉(zhuǎn)過第一第二輪之后, 14號實線代表的振動響應(yīng)左軸承和虛線代表是正確的。 圖4示意圖磨損形式。錘片的磨損的主體部分的振動頻率之前和之后沒有變化。 但強度在每一個頻率是完全不同的圖5振動響應(yīng)每個軸承從相應(yīng)的頻率,損壞轉(zhuǎn)子。在低頻階段加強和強度削弱了在高頻率的階段。特別是根據(jù)“甚至磨損”形勢的變化很大大于其他情況下。和同樣的結(jié)論可以發(fā)現(xiàn)振動擴增管轉(zhuǎn)子。通過對比Fig.5b和Fig.5c , 可以推斷,徑向偏移嚴重破壞了平衡的轉(zhuǎn)子。這一結(jié)論也可以通過Fig.5d和 Fig.5e的對比得到。由于徑向偏移量“相鄰不均勻磨損“顯然是大于“不對稱不均勻磨損” 。強度在強迫振動頻率(24.67赫茲)增加多少更根據(jù)“甚至耐磨”和“相鄰不均勻磨損”的情況,雖然有點變化根據(jù)以上兩種情況對比。
4結(jié)論
?(1)磨損形式并不影響能使錘片的振動頻率改變的轉(zhuǎn)子。然而,它確實帶來了明顯的變化強度的頻率,其中的強度低頻率的階段,同時加強這一高頻率階段的削弱。
(2)徑向偏移現(xiàn)實出來是不穩(wěn)定的轉(zhuǎn)子相對于軸向偏移。振幅和強度大大增加時質(zhì)心偏離徑向。
(3)強度的強迫振動頻率大大提高時,會出現(xiàn)無論是錘片磨損均勻或鄰近群體錘片磨損不均等方面的磨損情況。它需要較大的徑向力來抵消這兩個磨損形式,結(jié)果是不穩(wěn)定的轉(zhuǎn)子。
(4)基于以上這些結(jié)論,為了控制飼料粉碎機的轉(zhuǎn)子的振動,飼料粉碎機的轉(zhuǎn)子不應(yīng)徑向偏移。因此,轉(zhuǎn)子需要很好的平衡特別是需要在達到動態(tài)平衡之前進入正常的運行。
附錄2 英文參考資料
Vibration generated by the abrasion of the hammer slicein feed-grinder based on virtual prototype technology
Abstract: The abrasion of the hammer slice can cause the rotor of the feed-grinder to lose balance and then make the grinder vibrate. A virtual prototype (VP) based on the rotor of SFSP112×30 feed-grinder was set up by using MDT and vN4D for investigating the relationship between the abrasion of the hammer slice and the vibration of the rotor. By simulating the VP with various abrasion forms, it has been found that the abrasion form does not influence the makeup of the vibration frequency but the intensity. That is, the intensity of the low-frequency stage strengthens but that of the high-frequency stage weakens when the hammer slices are worn out. The vibration amplitude and intensity both increase when the abrasion makes the centroid of the rotor offset radially. However, they do not change much when the centroid offsets axially. The intensity of the forced vibration frequency also greatly rises when the center of mass offsets radially.
Therefore, to damp the vibration of the feed-grinder the centroid of the rotor had better not offset radially.
Key words feed-grinder; hammer slice; virtual prototype (VP); abrasion; vibration
Vibration generated by the abrasion of the hammer slice in feed-grinder based on virtual prototype technology[J]. As one of the kernel equipment in feedstuff processing industry, the feed-grinder has been developed for years. But because of its special processing object, like cereal and mineral, there are few theoreti- cal studies on the feed-grinder except some experimen- tal researches. However, while the feed-grinder runs into many problems such as vibration, noise and clog- ging which mainly result from its own structure char- acteristics, running environment and fitting precision.
Although some methods such as lower rotational speed and wider rotor diameter have been adopted to im-prove its performance, those problems cannot be thor- oughly solved. Recently, et al has analyzed the vibration of the feed-grinder by calculat- ing the natural frequency of the rotor. Therefore, the rotation speed can be adjusted to be lower or high- er than the resonance speed to damp the vibration of the pulverator. But the natural frequency of the rotor is not constant, especially after long time grinding. On account of the array of the hammer slices and other factors, the hammer slices usually abrade unevenly, which causes the eccentricity of the rotor and then make the grinder vibrate[9]. Therefore, studying the characteristics when the hammer slices abrade is quite practical for taking better action to damp the vibration of the pulverator.
Virtual prototype (VP) technology is a process ofusing a CAD model, instead of a physical prototype, to test and evaluate the specific characteristics of a product or a manufacturing process[1]. The develop- ment of hardware and software of computer and network technology widely expands the application of VP. Meanwhile, traditional optimization and simula- tion techniques provide essential foundation to realize VP. Except for the hi-tech field, VP technology has also been applied to agricultural machinery design increasingly[10]. The authors attempt to apply VP technology to the engineering analysis of general machinery.
In this paper a simplified dynamic model for the rotor of the feed-grinder was developed based on rotor dynamics and the corresponding virtual prototype of the rotor was generated by using MDT and vN4D. By simulating the VP under different abrasion situations, the vibration characteristics of the rotor when the hammer slices abrade was analyzed.
1 Simplified model of the rotor
The rotor of SFSP112×30 feed-grinder with the symmetrical hammer slice array is shown in Fig.1. It consists of spindle, ball bearings, disk boards, ham-mer slices, pins and sleeves and its full-load rotational speed is 1480 r/min. So its frequency of the forced vibration should be 1480/60=24.67Hz.
Fig.1 Diagram of the rotor of SFSP112×30 feed-grinder
Based on the simplification principle of lumped parameter method[2]that the simplified model should have the same gross mass, moment of inertia and posi- tion of centroid to the original, the rotor of the pulver- ator was simplified into a one-span six-disc rotor system with two springs' support, as shown in Fig.2. The right end of the spindle and the center of each ball bearing and disk board are chosen as the positions of six disks. Fig.2 Simplified model of the rotor
The ball bearing is generally considered that it only provides stiffness because of its small damping[3]. In the system each self-aligning bearing on one side of the spindle is modeled as a spring, the stiffness of which can be calculated in the light of the following equation[4]:
2 Virtual prototype of the rotor
The 3D model of the rotor which only includes parts related to the simulation was built in MDT, a three- dimensional modeling software. The initialization of VP was fulfilled in vN4D, including importing the 3D model from MDT, modifying constraints between the parts and appending motor power[5]. Some important steps are listed below:
1) Instead of flat key joint each disk board is attached to the spindle by rigid joint which locks two bodies together absolutely.
2)Rigid jointis also used to fasten the pin with the disk board.
3) Because sleeves are used to limit the positions of the hammer slices, rigid joint is set as the constraint between the sleeve and the pin.
4) Constraint between the hammer slice and the pin is revolution joint, which is used to limit the motion of two bodies so that one body only rotates about a certain axis with respect to the other body.
5) The ball bearings are replaced by bushing constraint which can simulate the function of ball bearings. Eq. (1) is set as the stiffness function parameter of bushing constraint.
6) A motor constraint is added to the left end .
3 VP simulation and analysis
In order to accelerate the simulation speed, only those circumstances without external applied load were simulated. Meanwhile, since the pulverator needs a very short accelerating time, only the stage when the rotor runs stably is considered in this paper. As a result of the permutation of the hammer slices, the axial distribution of the material in the mill housing is often inhomogeneous and so does the wear extent of each hammer slice along the spindle. There- fore, the centroid of the rotor deviates from its original position. According to the probable deviation direction of the centroid, namely, radial, axial and both directions, four kinds of abrasion forms were specified. Furthermore, to contrast with the vibration under abrasion situations the performance with undamaged hammer slices was also simulated. The results of simulation are listed in Table 1.Table 1 VP simulation results with five abrasion forms of hammer slices
The diagrammatic sketch of the assumed abrasion forms is shown in Fig. 4. The four pin-and-sleeve groups were labeled fromⅠtoⅣclockwise when viewed from the axial direction and the hammer slices in each group are all marked from 1 to 8 parallel to the spindle. In Fig.4a the worn extent of each hammer slice is equal. In Fig. 4b the worn extent of each hammer slice in one group is unequal while the corresponding hammer slices in groupⅠandⅢhave the same worn extent. As for Fig.4c and Fig.4d the worn extent of the hammer slice is not identical entirely.
Figure 5 shows the vibration acceleration and power spectrum diagram (PSD) of the ball bearings collected in the process that the VP of the rotor ran for one second after it had wheeled for 14 s. Real line represents the vibration response of the left bearing and dashed line represents that of the right one. Fig.4 Sketch of abrasion forms.
The component of the vibration frequency changes little before and after the hammer slices are worn out. But the intensity at each frequency is quite different Fig.5 Vibration response of each bearing from the corresponding frequency of undamaged rotor.
At low-frequency stage the intensity strengthens and weakens at high-frequency stage. Especially the intensity under " even abrasion" situation changes much greater than that under other situations. And the same conclusion can be found for the vibration amplitude of the rotor. By contrasting Fig.5b and Fig.5c, it can be inferred that the radial offset of the centroid badly destroyed the balance of the rotor. This conclusion can also be acquired by contrasting Fig.5d and Fig.5e because the radial offset quantity of "adjacent uneven abrasion" is obviously larger than that of "asymmetric uneven abrasion". The intensity at the forced vibration frequency (24.67Hz) increases much more sharply under " even abrasion" and " adjacent uneven abrasion" situations while it changes a little under the other two situations.
4 Conclusions
1) The abrasion form of hammer slice does not influence the makeup of the vibration frequency of the rotor. However it really brings obvious changes to the intensity of the frequency, which exhibits that the intensity of low-frequency stage strengthens while that of high-frequency stage weakens.
2) The radial offset of the centroid can markedly disrupt the balance of the rotor compared with the axial offset. The vibration amplitude and intensity both increase greatly when the center of mass deviates radially.
3) The intensity at the forced vibration frequency is greatly raised when either the hammer slices wear evenly or the adjacent hammer slice groups wear unevenly with respect to other abrasion forms. It owes to the larger radial centroidal offset of these two abrasion forms that results in the imbalance of the rotor.
4) Based on these conclusions above, in order to damp the vibration of the feed-grinder the centroid of the rotor should not present radial offset. So the rotor needs to be well balanced especially in the dynamic balance test before going into operation.
湖南農(nóng)業(yè)大學(xué)全日制普通本科生畢業(yè)論文(設(shè)計)
中 期 檢 查 表
學(xué) 院: 工學(xué)院
學(xué)生姓名
學(xué) 號
年級專業(yè)及班級
級機械設(shè)計制造及其自動化 專業(yè)(2 )班
指導(dǎo)教師姓名
指導(dǎo)教師職稱
副教授
論文(設(shè)計)題目
多功能精粗飼料粉碎機的設(shè)計
畢業(yè)論文(設(shè)計)工作進度
已完成的主要內(nèi)容
尚需解決的主要問題
查閱文獻收集資料,調(diào)研
了解飼料粉碎機的結(jié)構(gòu)和工作原理,形成總體設(shè)計思路,完成開題報告
完成總裝圖,部裝圖和零件圖的設(shè)計繪制
撰寫設(shè)計計算說明書
畢業(yè)設(shè)計審查
畢業(yè)設(shè)計答辯
指導(dǎo)教師意見
簽 名: 年 月 日
檢查小組意見
組長簽名: 年 月 日
注:1.此表可用黑色簽字筆填寫,也可打印,但意見欄必須相應(yīng)責(zé)任人親筆填寫。
2.此表可從教務(wù)處網(wǎng)站下載中心下載。
湖南農(nóng)業(yè)大學(xué)全日制普通本科生
畢業(yè)論文(設(shè)計)任務(wù)書
學(xué)生姓名
學(xué) 號
年級專業(yè)及班級
指導(dǎo)教師及職稱
副教授
學(xué) 院
工學(xué)院
20 12 年 12 月 3 日
填 寫 說 明
一、畢業(yè)論文(設(shè)計)任務(wù)書是學(xué)校根據(jù)已經(jīng)確定的畢業(yè)論文(設(shè)計)題目下達給學(xué)生的一種教學(xué)文件,是學(xué)生在指導(dǎo)教師指導(dǎo)下獨立從事畢業(yè)論文(設(shè)計)工作的依據(jù)。此表由指導(dǎo)教師填寫。
二、此任務(wù)書必需針對每一位學(xué)生,不能多人共用。
三、選題要恰當(dāng),任務(wù)要明確,難度要適中,份量要合理,使每個學(xué)生在規(guī)定的時限內(nèi),經(jīng)過自己的努力,可以完成任務(wù)書規(guī)定的設(shè)計研究內(nèi)容。
四、任務(wù)書一經(jīng)下達,不得隨意更改。
五、各欄填寫基本要求。
(一)畢業(yè)論文(設(shè)計)選題來源、選題性質(zhì)和完成形式:
請在合適的對應(yīng)選項前的“□”內(nèi)打“√”,科研課題請注明課題項目和名稱,項目指“國家青年基金”等。
(二)主要內(nèi)容和要求:
1.工程設(shè)計類選題
明確設(shè)計具體任務(wù),設(shè)計原始條件及主要技術(shù)指標;設(shè)計方案的形成(比較與論證);該生的側(cè)重點;應(yīng)完成的工作量,如圖紙、譯文及計算機應(yīng)用等要求。
2.實驗研究類選題
明確選題的來源,具體任務(wù)與目標,國內(nèi)外相關(guān)的研究現(xiàn)狀及其評述;該生的研究重點,研究的實驗內(nèi)容、實驗原理及實驗方案;計算機應(yīng)用及工作量要求,如論文、文獻綜述報告、譯文等。
3.文法經(jīng)管類論文
明確選題的任務(wù)、方向、研究范圍和目標;對相關(guān)的研究歷史和研究現(xiàn)狀簡要介紹,明確該生的研究重點;要求完成的工作量,如論文、文獻綜述報告、譯文等。
(三)主要中文參考資料與外文資料:
在確定了畢業(yè)論文(設(shè)計)題目和明確了要求后,指導(dǎo)教師應(yīng)給學(xué)生提供一些相關(guān)資料和相關(guān)信息,或劃定參考資料的范圍,指導(dǎo)學(xué)生收集反映當(dāng)前研究進展的近1-3年參考資料和文獻。外文資料是指導(dǎo)老師根據(jù)選題情況明確學(xué)生需要閱讀或翻譯成中文的外文文獻。
(四)畢業(yè)論文(設(shè)計)的進度安排:
1.設(shè)計類、實驗研究類課題
實習(xí)、調(diào)研、收集資料、方案制定約占總時間的20%;主體工作,包括設(shè)計、計算、繪制圖紙、實驗及結(jié)果分析等約占總時間的50%;撰寫初稿、修改、定稿約占總時間的30%。
2.文法經(jīng)管類論文
實習(xí)、調(diào)研、資料收集、歸檔整理、形成提綱約占總時間的60%;撰寫論文初稿,修改、定稿約占總時間的40%。
六、各欄填寫完整、字跡清楚。應(yīng)用黑色簽字筆填寫,也可使用打印稿,但簽名欄必須相應(yīng)責(zé)任人親筆簽名。
畢業(yè)論文
(設(shè)計)題目
多功能精粗飼料粉碎機的設(shè)計
選題來源
□結(jié)合科研課題 課題名稱:
■生產(chǎn)實際或社會實際 □其他
選題性質(zhì)
□基礎(chǔ)研究 ■應(yīng)用研究 □其他
題目完成形式
□畢業(yè)論文 ■畢業(yè)設(shè)計 □提交作品,并撰寫論文
主要內(nèi)容和要求
錘片式飼料粉碎機原理是由高速旋轉(zhuǎn)的活動錘片與固定圈的相對運動,使物料在粉碎室內(nèi)發(fā)生旋轉(zhuǎn),對物料進行粉碎(含錘擊、碰撞、摩擦等)的機具。物料在粉碎室內(nèi)受高速旋轉(zhuǎn)錘片的沖擊作用,使物料在粉碎室內(nèi)沿篩面形成圓周運動,產(chǎn)生環(huán)流層,大顆粒物料在外層,小顆粒物料在內(nèi)層,物料達到粉碎粒度后通過篩孔,獲得人們所要求大小的飼料。其生產(chǎn)效率與其對物料的破碎能力和分離能力緊密相關(guān),而生產(chǎn)效率低往往是由于粉碎后的碎物料不能及時排出粉碎室,造成重復(fù)粉碎,浪費了功耗。 如何提高碎物料的分離能力是解決錘片式飼料粉碎機生產(chǎn)效率的關(guān)鍵,本設(shè)計從提高碎物料分離能力入手設(shè)計高效飼料粉碎機。主要內(nèi)容為:
1. 總體方案的擬定與設(shè)計計算;
2. 粉碎室主要參數(shù)的設(shè)計計算;主軸、從動軸,帶輪、齒輪、箱體等重要零部件的設(shè)計;
3. 軸承及其它重要標準件選用的原因分析及計算依據(jù)。
設(shè)計具體要求如下:
1.設(shè)計圖紙不得少于4張0#圖紙
2.設(shè)計說明書全部打印,格式規(guī)范符合湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院畢業(yè)設(shè)計規(guī)范要求,字數(shù)不得少于1萬字。正文的主要結(jié)構(gòu)層次:
1)前言:簡要介紹粉碎機設(shè)計現(xiàn)狀及問題,本設(shè)計的目的、意義、主要內(nèi)容,改進與創(chuàng)新。
2)總體方案的擬定與優(yōu)選:要有方案的比較,選優(yōu),要有必要的簡圖和設(shè)計說明。
3)設(shè)計計算與分析:如工作過程中的物料速度、流量計算及主要零部件的受力分析及強度、剛度、穩(wěn)定性方面的設(shè)計和校核計算。
4)繪出設(shè)計總裝圖,主軸、從動軸、箱體等主要零部件部裝圖的cad圖紙。
5)設(shè)計總結(jié):對整個畢業(yè)設(shè)計主要成果的總結(jié)。明確指出本次設(shè)計的優(yōu)點(對已有設(shè)計所做的改進)和缺點(不足及沒有考慮周全的地方),對其應(yīng)用前景及社會、經(jīng)濟價值加以預(yù)測和評價,并指出今后進一步改進設(shè)計的方向與設(shè)想。
主要中文參考資料與外文資料
[1] 汪志民.6FQ-50型錘式粉碎機的研究[J].制造業(yè)自動化,2009.
[2] 何明打. 9FC-38型飼料粉碎機的研究設(shè)計[J]. 制造業(yè)自動化,2008.
[3] 劉華權(quán),何培軍.9FD-30型飼料粉碎機的研究設(shè)計[J]. 制造業(yè)自動化,2009.
[4] 馬德懿.9FQ-250型錘片式飼料粉碎機設(shè)計及試驗研究[J]. 制造業(yè)自動化,2007.
[5] 錘片式粉碎機參數(shù)確定及對性能的影響[J]. 制造業(yè)自動化,2009.
[6] 穆維好.錘片式飼料粉碎機主參數(shù)的確定及對性能的影響[J]. 制造業(yè)自動化,2008.
[7] 張肇鯤.多功能飼料粉碎混合機的研制[J]. 制造業(yè)自動化,2009.
[8] 何占松等.93FCJ34-43多功能精粗飼料粉碎機研究設(shè)計[J]. 制造業(yè)自動化,2008.
[9] 高國章等.93FCW36-46型多級無篩粗飼料粉碎機試驗研究[J]. 制造業(yè)自動化,2010.
注:此表如不夠填寫,可另加附頁。
工作進度安排
起止日期
主要工作內(nèi)容
2012年11月25日前
查閱文獻收集資料,調(diào)研
2013年1月7日前
了解飼料粉碎機的結(jié)構(gòu)和工作原理,形成總體設(shè)計思路,完成開題報告
2013年3月20日前
完成總裝圖,部裝圖和零件圖的設(shè)計繪制
2013年4月1日前
中期考核
2013年5月1日前
撰寫設(shè)計計算說明書
2013年5月6日前
畢業(yè)設(shè)計審查
2013年5月25日前
畢業(yè)設(shè)計答辯
要求完成日期:20 13 年 5 月 06 日 指導(dǎo)教師簽名:
審查日期:20 12 年 12 月 04 日 專業(yè)委員會主任簽名:
批準日期:20 12 年 12 月 05 日 學(xué)院指導(dǎo)委員會簽名(公章):
接受任務(wù)日期:20 12 年 12 月 05 日 學(xué)生本人簽名:
注:簽名欄必須由相應(yīng)責(zé)任人親筆簽名。此表可從教務(wù)處網(wǎng)站下載中心下載。