【五層】5100平米左右框架結(jié)構(gòu)局部六層大學(xué)教學(xué)樓(開題報(bào)告、任務(wù)書、計(jì)算書、設(shè)計(jì)圖)
【五層】5100平米左右框架結(jié)構(gòu)局部六層大學(xué)教學(xué)樓(開題報(bào)告、任務(wù)書、計(jì)算書、設(shè)計(jì)圖),【溫馨提示】壓縮包內(nèi)含CAD圖有預(yù)覽點(diǎn)開可看。打包內(nèi)容里dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,所見才能所得,請(qǐng)細(xì)心查看有疑問可以咨詢QQ:11970985或197216396
畢業(yè)設(shè)計(jì)
外文資料翻譯
原文題目:Reinforcement of concrete beam–column connections with hybrid FRP sheet
譯文題目:具有混合纖維增強(qiáng)塑料片的混凝土梁–柱聯(lián)接部位的加固
院系名稱: 工學(xué)院建筑系 專業(yè)班級(jí): 土木工程2班
學(xué)生姓名: 學(xué) 號(hào):
指導(dǎo)教師:
附 件: 1.外文資料翻譯譯文;2.外文原文。
附件1:外文資料翻譯譯文
摘要
本篇文章描述了對(duì)加固后標(biāo)準(zhǔn)尺寸混凝土結(jié)構(gòu)試件進(jìn)行試驗(yàn)的結(jié)果,該試件代表平面框架結(jié)構(gòu)中的梁–柱聯(lián)接部位。設(shè)計(jì)試驗(yàn)的目的是為了研究在靜載條件下纖維增強(qiáng)塑料被應(yīng)用到梁–柱聯(lián)接部位外表面附近時(shí)對(duì)所測(cè)試件的影響。特別令人感興趣的是在靜載條件下應(yīng)用纖維增強(qiáng)塑料對(duì)增強(qiáng)梁–柱聯(lián)接部位所起的作用。作為研究的關(guān)鍵,為了從外部對(duì)混凝土的連接部分進(jìn)行加固,設(shè)計(jì)了帶有E玻璃無(wú)捻粗紗布和碳布的混合纖維增強(qiáng)塑料復(fù)合物,并且該復(fù)合物結(jié)合了短貼原絲氈和帶有乙烯基酯樹脂的玻璃纖維帶。結(jié)果顯示,對(duì)于應(yīng)用纖維增強(qiáng)塑料改進(jìn)過的混凝土結(jié)構(gòu)的關(guān)鍵部分能夠?qū)炷两Y(jié)構(gòu)的強(qiáng)度和硬度起到增強(qiáng)的作用,同時(shí)也能夠起到在不同類型荷載條件下增強(qiáng)它們的效果。同時(shí),本篇文章也討論了為改進(jìn)和增強(qiáng)混凝土結(jié)構(gòu)的強(qiáng)度和硬度而如何選擇纖維增強(qiáng)塑料和結(jié)構(gòu)類型。
關(guān)鍵詞:混凝土結(jié)構(gòu);加固;修復(fù);混合纖維增強(qiáng)塑料;繞接技術(shù)
1.引言
為了對(duì)混凝土結(jié)構(gòu)進(jìn)行改進(jìn),一個(gè)被廣泛采用的技術(shù)是使用鋼外套管放置于現(xiàn)有混凝土柱的周圍,這種使混凝土產(chǎn)生側(cè)向限制的技術(shù)已經(jīng)被廣泛的研究[1,2];而且已經(jīng)顯示重縮載重承載量和混凝土柱的延性增加。然而,這一個(gè)技術(shù)的缺點(diǎn)是它在實(shí)際的應(yīng)用受到來(lái)自腐蝕和固有的缺點(diǎn)。
另一方面,纖維增強(qiáng)塑料日益被采用來(lái)加固混凝土,磚石和木結(jié)構(gòu)。通過關(guān)鍵部分的外表面采用纖維增強(qiáng)塑料來(lái)加固結(jié)構(gòu),能夠很明顯提高結(jié)構(gòu)的載重量和結(jié)構(gòu)的效用。最近幾年,纖維增強(qiáng)塑料的材料類型更加的廣泛,有玻璃纖維、碳纖維等。它們提供給設(shè)計(jì)者一個(gè)使用的、有效的構(gòu)造材料,這些材料具有范圍很廣的模數(shù)和強(qiáng)度的特性。和傳統(tǒng)的加固技術(shù)相比,纖維增強(qiáng)塑料復(fù)合物具有特別高的強(qiáng)度和硬度,以及設(shè)計(jì)上的靈活性、在不利的環(huán)境中的可替代性、較強(qiáng)的韌性等優(yōu)點(diǎn)。通過優(yōu)化材料組成和結(jié)構(gòu),使得纖維增強(qiáng)塑料達(dá)到最好的加固效果是可能的,同時(shí)也是必要的。為了在實(shí)際的加固過程中充分利用纖維增強(qiáng)塑料的優(yōu)點(diǎn),優(yōu)化組成材料和結(jié)構(gòu)是非常必要的。研究表明,正方形混凝土柱周圍的碳纖維/ 環(huán)氧基樹脂能夠使其負(fù)載能力增加8%—22%,而這種能力的增強(qiáng)是依賴于大量纖維的使用以及對(duì)基層表面的處理。樹脂注入技術(shù)的使用表明其對(duì)繞接效果的改進(jìn)起了非常重要的作用,研究表明,當(dāng)使用玻璃無(wú)捻粗紗布來(lái)增強(qiáng)繞接效果時(shí),不僅能顯著提高混凝土的負(fù)載能力同時(shí)也能夠增加混凝土短支柱的變形抵抗能力。此外,通過使用帶有環(huán)氧樹脂的玻璃/ 碳混合增強(qiáng)材料來(lái)加固混凝土,當(dāng)對(duì)混凝土柱進(jìn)行反復(fù)的試驗(yàn)來(lái)檢測(cè)它的最初性能時(shí),發(fā)現(xiàn)它的負(fù)載能力進(jìn)一步的提高了。根據(jù)復(fù)合物彎曲的方位和厚度,表明在套箍位置處進(jìn)行加固會(huì)產(chǎn)生更好的效果。盡管已經(jīng)進(jìn)行了大量的研究,但是大多數(shù)研究中都存在一個(gè)不足之處,即他們所做的試驗(yàn)僅限于形狀較小較簡(jiǎn)單的結(jié)構(gòu),如混凝土圓柱體,而不是真正的結(jié)構(gòu)。此外,有必要根據(jù)成本其中包括材料和處理方法來(lái)研究使組合結(jié)構(gòu)達(dá)到最優(yōu)化。這就表明,當(dāng)使用纖維增強(qiáng)塑料來(lái)進(jìn)行基礎(chǔ)加固時(shí),應(yīng)該使用各種材料的優(yōu)點(diǎn),不僅僅是帶有環(huán)氧樹脂的碳纖維,同時(shí)也應(yīng)該包括玻璃纖維或帶有其它聚合樹脂的碳/玻璃纖維的復(fù)合物,在這個(gè)試驗(yàn)中為了加固一個(gè)典型的建筑部分,即梁–柱聯(lián)接部位,設(shè)計(jì)了一個(gè)帶有乙烯基酯樹脂的碳/E玻璃復(fù)合物。為了研究帖有纖維增強(qiáng)塑料對(duì)構(gòu)件的影響,在靜載條件下,分別對(duì)通過纖維增強(qiáng)塑料加固后的試件和沒有加固的試件進(jìn)行了大量的試驗(yàn)。
研究報(bào)告是一個(gè)合作研究項(xiàng)目的一個(gè)組成部分,該項(xiàng)目是有悉尼理工大學(xué)、高級(jí)材料技術(shù)中心和悉尼大學(xué)共同合作研究的關(guān)于應(yīng)用高級(jí)纖維復(fù)合物來(lái)增大混凝土的強(qiáng)度和硬度,由此來(lái)對(duì)混凝土結(jié)構(gòu)進(jìn)行加固。
1、 實(shí)驗(yàn)程序
為了這一項(xiàng)目設(shè)計(jì)了三個(gè)標(biāo)準(zhǔn)尺寸加固混凝土結(jié)構(gòu)試件,它們代表了典型的梁–柱聯(lián)接部位。圖一表示了局部帶有纖維增強(qiáng)塑料構(gòu)件的幾何形狀。在這三個(gè)試件中,其中兩個(gè)試件相當(dāng)于混凝土梁–柱聯(lián)接類型(非加固試件),另一個(gè)是在梁–柱聯(lián)接部位周圍用碳纖維和玻璃纖維復(fù)合物加固的試件(加固試件)。這三個(gè)試件都使用標(biāo)準(zhǔn)商品混凝土,其強(qiáng)度等級(jí)為C40。在圖一中也顯示了混凝土試件的配筋情況。為了測(cè)定混凝土的彈性模量和抗壓強(qiáng)度,進(jìn)行了混凝土抗壓試驗(yàn),該實(shí)驗(yàn)是根據(jù)AS 1012–1986標(biāo)準(zhǔn)進(jìn)行的。
圖1 試件的幾何細(xì)節(jié)(沒按比例確定)
2.1 復(fù)合式結(jié)構(gòu)
三個(gè)混凝土結(jié)構(gòu)試件中的一個(gè)用復(fù)合物進(jìn)行加固,該復(fù)合物由四個(gè)部分組成,包括E玻璃無(wú)捻粗紗布(WR-600g/ m2)、短貼原絲氈(CSM-300g/m2)、碳布(200g/ m2)和玻璃纖維布(GFT-250g/ m2)詳細(xì)見表格1和圖2,平面詳圖見圖3。雙軸平面布置不僅對(duì)軸向方向提供了相當(dāng)?shù)膹?qiáng)度,而且對(duì)箍部位也起到了同樣的作用。而玻璃無(wú)捻粗紗布和碳布的使用對(duì)于雙軸平面布置起到多方位的加固作用,在這個(gè)復(fù)合式結(jié)構(gòu)中它們都起到了基本的加固作用。把玻璃纖維帶應(yīng)用到箍部位能夠提供非常好的限制作用,同時(shí)也能夠增強(qiáng)結(jié)構(gòu)的完整性。樹脂修復(fù)系統(tǒng)的選擇主要與樹脂膠性時(shí)間有關(guān)。一般來(lái)說(shuō),當(dāng)采用濕鋪法,可以使用冷環(huán)繞樹脂系統(tǒng)。對(duì)于本次研究所描述的環(huán)繞方法沒有可采用濕鋪機(jī)器,所以采用人工方式。在室溫下,乙烯基酯樹脂和Dastar-R/VERPVE/SW/TP被混合并且混合有1.5%的MEKP,0.4%的CONAP和0.5%的DMA。在室溫條件下加工處理樹脂。對(duì)于玻璃無(wú)捻粗紗布/短貼原絲氈層,樹脂和纖維的比率是1:1.5,對(duì)于碳布比率是1:0.8?;炷翗?gòu)件被一層lames-wool和一層加固層所包裹。在放置第一層纖維層之前,應(yīng)使用丙酮來(lái)清理混凝土的表面,然后采用樹脂涂層去密封混凝土表面上的小洞。然而,當(dāng)進(jìn)行進(jìn)一步的表面處理時(shí),應(yīng)該有意識(shí)的去避免沙粒被暴露在外面。為了確使結(jié)構(gòu)完全加固,每一個(gè)復(fù)合層都應(yīng)該用樹脂潤(rùn)濕并且卷在混凝土結(jié)構(gòu)之上。
表1
圖2
圖3
2.2靜載試驗(yàn)設(shè)計(jì)
在水平面上設(shè)計(jì)混凝土結(jié)構(gòu)試件的靜載試驗(yàn),三個(gè)混凝土框架支撐是卷筒狀的,如圖4。被加載構(gòu)件末端也是卷筒類型的支撐。然而,其水平運(yùn)動(dòng)沒有被明顯的限制。為了在沒個(gè)構(gòu)件末端能夠提供理想的卷筒類型邊界條件,設(shè)計(jì)了一個(gè)專門的裝置,該裝置在加載點(diǎn)配有滾筒和一個(gè)軸承,如圖5。在試驗(yàn)中,使用了4個(gè)1000KN的千斤頂。在它們之中唯一一個(gè)活動(dòng)的是那個(gè)放在加載構(gòu)件出的,而其它的幾個(gè)只簡(jiǎn)單的起到提供支座反力的作用。
圖4
圖5
2.3儀表使用和數(shù)據(jù)記錄
使用4個(gè)千斤頂?shù)难b載單元放置在每個(gè)支撐物和加載點(diǎn)上,測(cè)出所家荷載和反作用力的大小。為了獲得混凝土框架試件準(zhǔn)確的偏差撓曲線。使用12個(gè)可變位移傳感器,該傳感器測(cè)量范圍為±2.5mm到±50mm,把它們放在重要位置上來(lái)測(cè)量撓度偏差。為了使試驗(yàn)更加地規(guī)范并對(duì)沒有經(jīng)過使用纖維增強(qiáng)塑料加固的混凝土結(jié)構(gòu)試件的變形有更準(zhǔn)確的了解,設(shè)計(jì)了大量應(yīng)變計(jì)來(lái)獲取所測(cè)試試件的壓力分布。每一個(gè)試件使用56個(gè)應(yīng)變計(jì),其中有28個(gè)應(yīng)變計(jì)放置在試件的鋼筋處,另外28個(gè)30mm的應(yīng)變計(jì)放置在混凝土結(jié)構(gòu)試件的外表面處。按順序排列應(yīng)變計(jì)以便能夠測(cè)出連接部分大量的點(diǎn)。對(duì)于大部分被測(cè)試的連接部分,一個(gè)典型的排列方式如圖6。應(yīng)變計(jì)在這些部分內(nèi)部的排列方式如圖7。
圖6
圖7
2.4 試驗(yàn)程序程
表2給出了所測(cè)試試件的名稱和一個(gè)簡(jiǎn)單的描述。在正式運(yùn)行負(fù)載進(jìn)行試驗(yàn)之前,首先對(duì)非加固試件進(jìn)行一系列研究試驗(yàn),主要是加載40KN,其中一個(gè)加到超過50KN。其次,對(duì)非加固試件和加固試件不家任何負(fù)載,直到達(dá)到先前使用負(fù)載水平。在每一個(gè)試件受到大約100次的加載后,處理所有最終負(fù)載試驗(yàn)。
表2
3.結(jié)果和分析
為了決定纖維增強(qiáng)塑料對(duì)加固結(jié)構(gòu)試件的影響,處理了在3個(gè)試件上進(jìn)行的5個(gè)試驗(yàn),其中包括以運(yùn)行負(fù)載進(jìn)行試驗(yàn)的三個(gè)試驗(yàn)和以最終負(fù)載進(jìn)行試驗(yàn)的兩個(gè)試驗(yàn)。對(duì)于每個(gè)試驗(yàn),都進(jìn)行了四個(gè)負(fù)載記錄,十二個(gè)撓度記錄和 56 或 64個(gè)應(yīng)變的數(shù)據(jù)記錄。
3.1靜載試驗(yàn)的確定
為了使所做的靜載試驗(yàn)得到證實(shí),依次列出了每次試驗(yàn)的靜力平衡,如下:
外部荷載的平衡:由于在設(shè)計(jì)這些試驗(yàn)中避免了多余約束的存在,而且把加載裝置布置于加載點(diǎn)和反力點(diǎn),這使得通過使用簡(jiǎn)單的靜力學(xué)來(lái)檢驗(yàn)加載點(diǎn)和反力點(diǎn)的靜力平衡變的很方便。表2顯示的外部負(fù)載平衡令人很滿意。
斷面上力的平衡和力矩的平衡:為了準(zhǔn)確地計(jì)算內(nèi)部力和部分力矩,需要在指定的區(qū)間內(nèi)使用應(yīng)變計(jì)。為了處理在一個(gè)給定的斷面上的標(biāo)準(zhǔn)應(yīng)變, 做了下列的假設(shè):截面上的應(yīng)變沿線性變化,換句話說(shuō)就是在被給定的一個(gè)斷面上的應(yīng)變可以用一條應(yīng)變線表示。在這一假設(shè)條件下,采用具有兩個(gè)解釋變量的最小二乘法來(lái)獲得平面應(yīng)變,對(duì)于每個(gè)被給定的區(qū)間使用6個(gè)平面應(yīng)變值。圖8表示把所測(cè)得的平面應(yīng)變數(shù)值與用最小二乘法擬合所計(jì)算的數(shù)值做了比較。通過計(jì)算平面應(yīng)變可以獲得應(yīng)變值,這些數(shù)值將用于隨后的計(jì)算。對(duì)于確定一個(gè)被給定的斷面內(nèi)部的平衡,力的計(jì)算是通過結(jié)合在拉力段和壓縮段中所分別測(cè)得的數(shù)值而完成的。假設(shè)混凝土只受壓力和受拉區(qū)的力主要有鋼筋(一些表面帶有纖維增強(qiáng)塑料 )來(lái)承擔(dān)。平衡狀態(tài)即受壓區(qū)的合力與受拉區(qū)的合力相等。被給定斷面上的力矩應(yīng)該通過這個(gè)斷面上所受的壓力來(lái)計(jì)算。把它們與通過所測(cè)荷載來(lái)計(jì)算的數(shù)值做對(duì)比。這些計(jì)算的詳細(xì)公式如附錄 A,表3和表 4 表示靜載試驗(yàn)的確定。
圖8
表3
表4
3.2負(fù)荷–凸形豎曲線
圖9和圖10中顯示了加固試件的負(fù)荷–凸形豎曲線和非加固試件的對(duì)比情況,其中既包括在使用載荷條件下,又包括在極限載重條件下。結(jié)果顯示,由于使用了纖維增強(qiáng)塑料,使混凝土的硬度增加了大約45%(使用載荷條件下)。試驗(yàn)表明,在極限載重條件下使用纖維增強(qiáng)塑料加固混凝土結(jié)構(gòu)試件能夠使其負(fù)載能力提高大約30%。
圖9
圖10
3.3 應(yīng)變結(jié)果的分析
由于纖維增強(qiáng)塑料具有加固作用,所以為了估計(jì)鋼筋處的應(yīng)變變化,定義了一個(gè)參數(shù),即“平面應(yīng)變約數(shù)”。定義如下:在相同的負(fù)載條件下,P代表兩個(gè)非加固試件中最大區(qū)間內(nèi)的平均應(yīng)變值,R代表兩個(gè)加固試件中最大區(qū)間內(nèi)的平均應(yīng)變值。表5和表6對(duì)非加固試件和加固試件的最大/最小應(yīng)變值進(jìn)行了典型的對(duì)比以及在相同荷載條件下不同斷面的平均應(yīng)變約數(shù)的對(duì)比情況(同見圖11)。如果對(duì)所有梁部分采用平均應(yīng)力約數(shù)的方法,它將產(chǎn)生 51% 的應(yīng)變縮減因子。以相同的方式, 對(duì)于柱部分將產(chǎn)生55% 的應(yīng)變縮減因子。平面應(yīng)變約數(shù)可以用以衡量外部使用纖維增強(qiáng)塑料加固的效果。
表5
表6
圖11
3.4 對(duì)應(yīng)用復(fù)合物建筑的討論
在使用載荷和極限載重條件下,對(duì)混凝土結(jié)構(gòu)試件進(jìn)行試驗(yàn),從所得到的結(jié)果可以發(fā)現(xiàn),采用纖維增強(qiáng)塑料來(lái)加固建筑物,能夠成功地提高結(jié)構(gòu)的硬度和負(fù)載能力。令人感興趣的是發(fā)現(xiàn)雖然纖維增強(qiáng)塑料的彈性模量?jī)H僅大約是混凝土的一半,但是在增強(qiáng)混凝土的硬度和負(fù)載能力方面卻扮演非常重要的角色。在應(yīng)用纖維增強(qiáng)塑料來(lái)加固混凝土結(jié)構(gòu)試件之前,雖然沒有采取專門的表面處理,但是復(fù)合物與混凝土表面之間的連接卻沒有失敗。這可能是由于復(fù)合物具有較小的彈性模量。有跡象表明,由于混凝土具有較低抗拉強(qiáng)度,所以彈性模量較小的纖維增強(qiáng)塑料可能對(duì)混凝土結(jié)構(gòu)起到更好的加固作用。在采用鋪法設(shè)計(jì)中,厚度的逐漸變化是必要的。這樣可以降低在纖維增強(qiáng)塑料中可能產(chǎn)生的應(yīng)力集中,這些應(yīng)力集中能夠引起混凝土的裂縫。然而,有必要指出,由于僅僅對(duì)一些受到限制的試件進(jìn)行研究,所以這些結(jié)論可能有一定的偏差。建議做更多的試驗(yàn)來(lái)證明這些結(jié)論。
4.結(jié)論
作為研究的結(jié)果,列出了以下結(jié)論:
1.對(duì)加固后標(biāo)準(zhǔn)尺寸混凝土結(jié)構(gòu)試件進(jìn)行試驗(yàn)已經(jīng)被成功地處理,所設(shè)計(jì)的試件代表了平面框架結(jié)構(gòu)中的梁–柱聯(lián)接部位。通過平衡校核證明了由該試驗(yàn)所得出的結(jié)論。
2. 由無(wú)捻粗紗布、碳布、短貼原絲氈和玻璃纖維帶組成的復(fù)合物有效地證明了纖維增強(qiáng)塑料對(duì)混凝土結(jié)構(gòu)試件的加固效果。試驗(yàn)的結(jié)果表明由于使用了纖維增強(qiáng)塑料復(fù)合物使得混凝土的硬度和負(fù)載能力有了明顯的提高。結(jié)果也表明用較低的成本加強(qiáng)混凝土結(jié)構(gòu)并且使其達(dá)到較好的效果,使結(jié)構(gòu)達(dá)到最優(yōu)化是很重要的。
3. 靜載試驗(yàn)的結(jié)果也表明具有較低彈性模量的混合碳/ E玻璃纖維復(fù)合物可能會(huì)提供更好的連接。然而,這需要被更多的試驗(yàn)證明。
4.研究也表明應(yīng)該進(jìn)行進(jìn)一步的研究,其中包括加固被破壞的混凝土結(jié)構(gòu)試件,循環(huán)荷載和使用不同的結(jié)構(gòu)類型。
附錄 A
假定梁/柱上一個(gè)被給定的斷面的應(yīng)變分布是線性的。對(duì)于給定的區(qū)間,應(yīng)變能夠被表達(dá)為
公式(A.1)
其中a,b,c是常數(shù)。
考慮兩個(gè)解釋變量的反映模型
Yi=0+1xi1+2xi2+ei, (A.2)
附件2:外文原文
Abstract The paper describes the results of tests on prototype size reinforced concrete frame specimens which were designed to represent the column–beam connections in plane frames. The tests were devised to investigate the influence of fibre reinforced plastic (FRP) reinforcement applied to external surfaces adjacent to the beam–column connection on the behaviour of the test specimens under static loading. Of particular interest under static loading was the influence of FRP reinforcement on the strength and stiffness of beam–column connection. As a key to the study, the hybrid FRP composites of E-glass woven roving (WR) and plain carbon cloth, combined with chopped strand mat (CSM), glass fiber tape (GFT) with a vinyl-ester resin were designed to externally reinforce the joint of the concrete frame. The results show that retrofitting critical sections of concrete frames with FRP reinforcement can provide signification strengthening and stiffening to concrete frames and improve their behaviour under different types of loading. The selections of types of FRP and the architecture of composites in order to improve the bonding and strength of the retro-fitting were also discussed.
Author Keywords: Concrete structure; Strengthening; Rehabilitation; Hybrid FRP composite; Wrapping technique
1. Introduction
A widely adopted technique for retrofitting concrete structure is to use steel jackets placed around existing concrete columns [1 and 2]. The use of steel encasement to provide lateral confinement to the concrete in compression has been studied extensively [3 and 4], and has shown increase in the compression load carrying capacity and ductility of the concrete columns. However, the shortcomings of this technique are that it suffers from corrosions as well as inherent difficulties during practical applications. Fibre reinforced plastic (FRP), on the other hand, is increasingly being used to reinforce concrete, masonry and timber structures. The load carrying capacity and serviceability of existing structures can be significantly augmented through externally retrofitting critical sections with FRP sheeting. In recent years FRP materials with wide range of fibre types of glass, aramid or carbon provide designers with an adaptable and cost-effective construction material with a large range of modulus and strength characteristics. Comparing with traditional rehabilitation techniques, the FRP composites have high specific strength/stiffness, flexibility in design and replacement as well as robustness in unfriendly environments. With FRP composites it is possible and also necessary to achieve the best strengthening results by optimising the constitute materials and architecture. Optimisation of the constitute materials and architecture becomes essential in order to utilise the superiority of FRP composites in application of rehabilitation [5, 6, 7, 8 and 9]. It was found that winding of carbon fiber/epoxy composites around square concrete columns can increase the load carrying capacity by 8–22%, depending on the amount of fibres used and treatments of substrate surface [10]. The use of resin infusion technique was shown to contribute to substantial improvements in composite wrapping efficiency, and the use of woven glass roving, as the reinforcement in composites wrapping, was found to significantly increase both load carrying capacity and deformation resistance capacity of the concrete stubs [2]. Furthermore, through the use of glass/carbon hybrid reinforcements with an epoxy resin, replication of initial performance of concrete stubs subjected to deterioration was shown possible, with a simultaneous further improvement in load carrying capacity. In terms of the effects of orientation and thickness of the composites warps, it was found that the predominant use of reinforcements in the hoop direction would result in high efficiency [11]. Despite the large number of research carried out, one shortcoming of most studies has been that they were limited to simple small size components, such as concrete cylinders, rather than real structures. Furthermore, it is essential to study the optimisation of composites architectures in terms of cost effectiveness including materials and processing methods. This implies that the reinforcement of infrastructure with FRP composites should utilise the advantages of various materials, not only carbon fibers with epoxy resin, but also glass fiber or hybrid of carbon/glass fibres with other polymer resins. In this experimental investigation, a hybrid of carbon/E-glass with vinyl-ester resin composites jacket was designed to reinforce a typical building components, namely a column–beam connection. Static tests were then conducted on FRP reinforced and non-reinforced specimens with extensive instrumentation to study the influence of the designed composite reinforcement.
The investigation reported in the paper forms part of a collaborative research program between the University of Technology, Sydney and the Centre for Advanced Materials Technology, the University of Sydney in relation to application of advanced fibre composites to strengthen, stiffen and hence rehabilitate concrete structures.
2. Experimental procedures
Three prototype size reinforced concrete frame specimens, representing typical concrete column–beam connection, were designed for this study. Geometry of the specimens with location of FRP composite reinforcement is illustrated in Fig. 1. Among three specimens, two of them are as-is concrete beam–column connection type (none composites-reinforced (Non-CR) specimens) and one specimen was reinforced by the hybrid of carbon fiber and glass fibre composites around the column–beam joint (composites-reinforced (CR) specimen). All three specimens were pre-cast using standard commercial mix grade 40 concrete. The steel reinforcement of the concrete specimens are also shown in Fig. 1. Concrete compression tests based on the Australian Standard (AS 1012–1986) were conducted on the samples taken during the concrete pour in order to determine the modulus of elasticity and ultimate compression strength (UCS) of the concrete.
2.1. Composites architecture
One of the three concrete frame specimens was reinforced with hybrid composites. The hybrid composites consists of four basic architectures, namely E-glass woven roving (WR/600 g/m2), chopped strand mat (CSM-300 g/m2), carbon cloth (plain weave-200 g/m2) and glass fibre tape (GFT-250 g/mm2). The details of the composites architecture are shown in Table 1 and Fig. 2. Details of lay-up are illustrated in Fig. 3. WR and carbon cloth are a multi-directional reinforcement with biaxial plain weaving which provide equivalent strength in both axial and hoop directions. They play the basic reinforcement role in this composites architecture. GFT applying at hoop direction provides very good confinement and enhances structural integrity. The selection of resin curing systems is mainly concerned with the resin gel-time at ambient temperature, which is critical to wrapping process. In general, cold setting resin systems (ambient temperature curing) can be used when wet lay-up process is applied. Since no lay-up machine is available for the wrapping process described in this study, the hand lay-up method was used. The vinyl-ester resin, Dastar-R/VERPVE/SW/TP, was mixed with 1.5% of MEKP (methyl-ethyl-ketone-peroxide), 0.4% of CoNap (Cobalt napthenate), and 0.5% of DMA (Dimethylaniline) at ambient temperature. The resin cures at ambient temperature. The weight ratio between resin and fibre layers was 1:1.5 for WR/CSM layers and 1:0.8 for carbon cloth, respectively. The concrete frame was wrapped by a lames-wool roller and a consolidating roller. Before laying the first fibre layer, the concrete surfaces were cleaned up using acetone, and a thin resin coat was applied to seal micro holes on the surface of concrete columns. However, further surface treatment such as sanding surface to expose the aggregates was intentionally avoided. Each composite layer was wetted with the resin and rolled onto the concrete frame to ensure full consolidation.
Table 1. Details of five composite systems with a composite architectures
2.2. Design of static tests
The static tests of the concrete frame specimens were setup in a horizontal plane. The three supports of the concrete frame (no load applied) were roller type as shown in Fig. 4. The end at which load was applied was also a roller type support, however, horizontal movements were obviously not prevented. In order to provide the ideal roller type boundary conditions at each end as designed, a special setup was developed with combination of rollers and a swivel head at each supporting/loading point (Fig. 5). Four 1000-kN-hydraulic jacks were used in the tests. Among them, the only active jack was the jack that applied loads, while others were simply acting as adjustable packing to providing the reactions.
Fig. 4. Illustrative sketch of test set-up for static test.
Fig. 5. Set-up for static test of concrete frame.
2.3. Instrumentation and data logging
Applied load as well as reaction forces were measured using four 998.8 kN load cells located in each of four supporting/loading positions. In order to obtain detailed flexural deflection curves for the concrete frame specimens, twelve linear variable displacement transducers (LVDTs) with a range from ±2.5 to ±50 mm were used at strategic locations to measure the flexural deflections. Extensive strain gauging was designed to capture the stress distribution of the testing specimens in order to validate tests and gain an insight into the behaviour of the concrete frame with or without FRP reinforcement. The total number of strain gauges was 56 for each specimen, in which 28 strain gauges (5 mm) were located on steel rebars and the rest (30 mm strain gauges) were located on the external surface of the concrete frame specimens. Locations of the strain gauges were arranged so that the strains on various points of the cross sections could be captured. A typical strain gauge arrangement for most measured cross sections is shown in Fig. 6. Locations of strain gauges inside the section are shown in Fig. 7.
Fig. 6. Location of cross sections of the concrete frame for strain gauging.
2.4. Test procedure
Designations of test specimens and a brief description are given in Table 2. Prior to being formally tested at service load level, the first non-CR specimen was subjected to a series of investigative tests mostly loaded at the service load level of 40 kN with one single overload up to 50 kN. The second non-CR specimen and the CR specimens were not subjected to any loading until the initial service load level tests. All ultimate load tests were conducted after every specimen was exposed to about 100 cycles of cyclic loading at service load levels.
Table 2. Applied load and reactions for typical tests (unit: kN)
3. Results and analysis
In order to determine the influence of FRP composites, five sets of tests were conducted on the three specimens including three tests at service load levels and two at the ultimate load level. For every test, logged data consisted of four load records, twelve deflection records and 56 or 64 strain records.
3.1. Validation of the static tests
To validate the performed tests, the static equilibrium for each test was verified as follows:
Equilibrium of external loads: As redundancy was avoided in design of these tests and load cells were placed at each loading or reaction point, it was convenient to check equilibrium of the load/reaction forces through simple statics. Table 2 shows that the equilibrium of external loads was satisfied.
Equilibrium of forces and equilibrium of moment on cross sections: In order to calculate the internal forces and sectional moments, strains on the designated sections were required. To process the measured strains on a given cross section, the following assumption was made: the strains vary linearly through the cross sections. In other words the strains at a given cross section can be represented by a strain plane. Under this assumption, least square method with the two explanatory variables was adopted to obtain the strain plane for each given cross section using values of six measured strains. Fig. 8 shows comparison of the measured strain values and those calculated from the least square fitting. The strain values used in subsequence evaluations or calculations were obtained from calculated strain planes. For the validation of the equilibrium of internal forces in a given cross section, forces were calculated by integration of resulting stresses in tension and compression zones, respectively. The concrete was assumed to carry only compression loads and steel rebars (with FRP composites in some cases) were considered as the main load carriers in the tension zone. Equilibrium states that the resultant force in the compression zone should be equal to that in the tension zone. Moments at a given cross section were firstly calculated through integration of stresses in the section. They were compared to those calculated by using measured loads multiplied by the lever arms. Details of formulae pertained to these calculations are presented in Appendix A. As shown in Table 3 and Table 4, equilibrium is validated.
Fig. 8. Comparison of measured vs calculated strain values from least square fitting.
Table 3. List of calculated internal force and moments at section A-A of a non-CR specimen
Table 4. List of calculated internal force and moments at section A-A of a CR specimen
3.2. Load–deflection curves
Comparison of load–deflection curves for CR and non-CR specimens at both service load and ultimate load levels are shown in Fig. 9 and Fig. 10. About 45% increase in stiffness was observed due to the presence of FRP composites reinforcement (service load level). Results of the ultimate loading test indicated an increase in load carrying capacity of CR specimen of approximately 30% due to the presence of FRP composites.
3.3. Analysis of the strain results
To evaluate change of strain in steel rebars due to FRP reinforcement, a parameter was defined, n
收藏