2019-2020年高中數(shù)學(xué)回歸分析的基本思想及其初步應(yīng)用教學(xué)案新人教A版選修2-2.doc
《2019-2020年高中數(shù)學(xué)回歸分析的基本思想及其初步應(yīng)用教學(xué)案新人教A版選修2-2.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)回歸分析的基本思想及其初步應(yīng)用教學(xué)案新人教A版選修2-2.doc(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)回歸分析的基本思想及其初步應(yīng)用教學(xué)案新人教A版選修2-2 【教學(xué)目標(biāo)】1.了解回歸分析的基本思想方法及其簡(jiǎn)單應(yīng)用. 2.會(huì)解釋解釋變量和預(yù)報(bào)變量的關(guān)系. 【教學(xué)重難點(diǎn)】 教學(xué)重點(diǎn):回歸分析的應(yīng)用. 教學(xué)難點(diǎn):、公式的推到. 【教學(xué)過(guò)程】 一、 設(shè)置情境,引入課題 引入:對(duì)于一組具有線(xiàn)性相關(guān)關(guān)系的數(shù)據(jù)其回歸直線(xiàn)方程的截距和斜率的最小二乘法估計(jì)公式分別為: 稱(chēng)為樣本點(diǎn)的中心。 如何推到著兩個(gè)計(jì)算公式? 二、 引導(dǎo)探究,推出公式 從已經(jīng)學(xué)過(guò)的知識(shí),截距和斜率分別是使取最小值時(shí)的值,由于 因?yàn)? 所以 在上式中,后兩項(xiàng)和無(wú)關(guān),而前兩項(xiàng)為非負(fù)數(shù),因此要使Q取得最小值,當(dāng)且僅當(dāng)前兩項(xiàng)的值均為0.,既有 通過(guò)上式推導(dǎo),可以訓(xùn)練學(xué)生的計(jì)算能力,觀察分析能力,能夠很好訓(xùn)練學(xué)生數(shù)學(xué)能力,必須在老師引導(dǎo)下讓學(xué)生自己推出。 所以: 三、 例題應(yīng)用,剖析回歸基本思想與方法 例1、 從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重的數(shù)據(jù)如圖所示: 編號(hào) 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 體重/kg 48 57 50 54 64 61 43 59 (1) 畫(huà)出以身高為自變量x,體重為因變量y的散點(diǎn)圖 (2) 求根據(jù)女大學(xué)生的身高預(yù)報(bào)體重的回歸方程 (3) 求預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重 解:(1)由于問(wèn)題中要求根據(jù)身高預(yù)報(bào)體重,因此選取身高為自變量x,體重為因變量y作散點(diǎn)圖 (2) (3)對(duì)于身高172cm的女大學(xué)生,由回歸方程可以預(yù)報(bào)體重為: 四、 當(dāng)堂練習(xí) 觀察兩相關(guān)變量得如下數(shù)據(jù) x —1 —2 —3 —4 —5 5 3 4 2 1 y —9 —7 —5 —3 —1 1 5 3 7 9 求兩個(gè)變量的回歸方程. 答: 所以所求回歸直線(xiàn)方程為 五、 課堂小結(jié) 1. 、公式的推到過(guò)程。 2. 六、布置作業(yè) 課本90頁(yè)習(xí)題1 3.1.1回歸分析的基本思想及其初步應(yīng)用 課前預(yù)習(xí)學(xué)案 一、 預(yù)習(xí)目標(biāo) 通過(guò)截距與斜率分別是使取最小值時(shí),求的值。 二、預(yù)習(xí)內(nèi)容: 1. 對(duì)于一組具有線(xiàn)性相關(guān)關(guān)系的數(shù)據(jù)其回歸直線(xiàn)方程的截距和斜率的最小二乘法估計(jì)公式: = ,= 2.= , = 3.樣本點(diǎn)的中心 三、提出問(wèn)題 如何使 值最小,通過(guò)觀察分析式子進(jìn)行試探推到 課內(nèi)探究學(xué)案 一、 學(xué)習(xí)目標(biāo) 1. 了解回歸分析的基本思想和方法 2. 培養(yǎng)學(xué)生觀察分析計(jì)算的能力 二、學(xué)習(xí)重難點(diǎn) 學(xué)習(xí)重點(diǎn):回歸方程, 學(xué)習(xí)難點(diǎn):、公式的推到 三、學(xué)習(xí)過(guò)程 1.使值最小時(shí),值的推到 2.結(jié)論 3.中和的含義是什么 4. 一定通過(guò)回歸方程嗎? 四、典型例題 例1.研究某灌溉倒水的流速y與水深x之間的關(guān)系,測(cè)得一組數(shù)據(jù)如下: 水深x(m) 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 流速y(m/s) 1.70 1.79 1.88 1.95 2.03 2.10 2.16 2.21 (1) 求y與x的回歸直線(xiàn)方程; (2) 預(yù)測(cè)水深為1.95m時(shí)水的流速是多少? 分析:(1)y與x的回歸直線(xiàn)方程為 (2)當(dāng)水深為1.95m時(shí),可以預(yù)測(cè)水的流速約為2.12m/s 五、當(dāng)堂練習(xí) 1.對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):則下列說(shuō)法不正確的是( ) A.由樣本數(shù)據(jù)得到的回歸方程必過(guò)樣本中心 B.殘差平方和越小的模型,擬合的效果越好 C.用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,越小,說(shuō)明模型的擬合效果越好 D.若變量y與x之間的相關(guān)系數(shù),則變量y與x之間具有線(xiàn)性相關(guān)關(guān)系 2.已知某地每單位面積菜地年平均使用氮肥量xkg與每單位面積蔬菜年平均產(chǎn)量yt之間的關(guān)系有如下數(shù)據(jù): 年份 1985 1986 1987 1988 1989 1990 1991 1992 x(kg) 70 74 80 78 85 92 90 95 y(t) 5.1 6.0 6.8 7.8 9.0 10.2 10.0 12.0 年份 1993 1994 1995 1996 1997 xx xx x(kg) 92 108 115 123 130 138 145 y(t) 11.5 11.0 11.8 12.2 12.5 12.8 13.0 若x與y之間線(xiàn)性相關(guān),求蔬菜年平均產(chǎn)量y與使用氮肥量x之間的回歸直線(xiàn)方程,并估計(jì)每單位面積蔬菜的年平均產(chǎn)量.(已知) 解:設(shè)所求的回歸直線(xiàn)方程為,則 所以,回歸直線(xiàn)方程為: 當(dāng)x=150kg時(shí),每單位面積蔬菜的年平均產(chǎn)量 課后練習(xí)與提高 1、 下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù): x 3 4 5 6 y 2.5 3 4 4.5 (1) 請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖; (2) 請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程; (3) 已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線(xiàn)性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤? (參考數(shù)值:) 解:(1)由題設(shè)所給數(shù)據(jù),可得散點(diǎn)圖如下圖 (2)由對(duì)照數(shù)據(jù),計(jì)算得: 已知 所以,由最小二乘法確定的回歸方程的系數(shù)為: 因此,所求的線(xiàn)性回歸方程為 (4) 由(2)的回歸方程及技改前生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗,得降低的生產(chǎn)能耗為 (噸標(biāo)準(zhǔn)煤)。 3.1.2 回歸分析的基本思想及其初步應(yīng)用回歸分析的基本思想及其初步應(yīng)用 【教學(xué)目標(biāo)】1.了解相關(guān)系數(shù)r;2 了解隨機(jī)誤差;3 會(huì)簡(jiǎn)單應(yīng)用殘差分析 【教學(xué)重難點(diǎn)】 教學(xué)重點(diǎn):相關(guān)系數(shù)和隨機(jī)誤差 教學(xué)難點(diǎn):殘差分析應(yīng)用。 【教學(xué)過(guò)程】 一、 設(shè)置情境,引入課題 上節(jié)例題中,身高172cm女大學(xué)生,體重一定是60kg嗎?如果不是,其原因是什么? 二、 引導(dǎo)探究,發(fā)現(xiàn)問(wèn)題,解決問(wèn)題 1 對(duì)于是斜率的估計(jì)值,說(shuō)明身高x每增加1個(gè)單位,體重就 ,表明體重與身高具有 的線(xiàn)性相關(guān)關(guān)系。 2 如何描述線(xiàn)性相關(guān)關(guān)系的強(qiáng)弱? (1)r>0表明兩個(gè)變量正相關(guān);(2)r<0表明兩個(gè)變量負(fù)相關(guān); (3)r的絕對(duì)值越接近1,表明相關(guān)性越強(qiáng),r的絕對(duì)值越接近0,表明相關(guān)性越弱。 (4)當(dāng)r的絕對(duì)值大于0.75認(rèn)為兩個(gè)變量具有很強(qiáng)的相關(guān)性關(guān)系。 3 身高172cm的女大學(xué)生顯然不一定體重是60.316kg,但一般可以認(rèn)為她的體重接近于60.316kg. ①樣本點(diǎn)與回歸直線(xiàn)的 ②所有的樣本點(diǎn)不共線(xiàn),而是散布在某一條直線(xiàn)的附近,該直線(xiàn)表示身高與體重的關(guān)系的線(xiàn)性回歸模型表示 e是y與的誤差,e為隨機(jī)變量,e稱(chēng)為隨機(jī)誤差。 ③E(e)=0,D(e)= >0.④D(e)越小,預(yù)報(bào)真實(shí)值y的精度越高。 ⑤隨機(jī)誤差是引起預(yù)報(bào)值與真實(shí)值y之間的誤差之一。 ⑥為截距和斜率的估計(jì)值,與a,b的真實(shí)值之間存在誤差,這種誤差也引起與真實(shí)值y之間的誤差之一。 4 思考 產(chǎn)生隨機(jī)誤差項(xiàng)e的原因是什么? 5 探究在線(xiàn)性回歸模型中,e是用預(yù)報(bào)真實(shí)值y的誤差,它是一個(gè)不可觀測(cè)的量,那么應(yīng)該怎樣研究隨機(jī)誤差?如何衡量預(yù)報(bào)的精度? ①來(lái)衡量隨機(jī)誤差的大小。② ③ ④ ⑤稱(chēng)為殘差平方和,越小,預(yù)報(bào)精度越高。 6 思考 當(dāng)樣本容量為1或2時(shí),殘差平方和是多少?用這樣的樣本建立的線(xiàn)性回歸方程的預(yù)報(bào)誤差為0嗎? 7 殘差分析 ①判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù);②殘差圖 ③相關(guān)指數(shù) ④R2越大,殘差平方和越小,擬合效果越好;R2越接近1,表明回歸的效果越好。 8 建立回歸模型的基本步驟: ①確定研究對(duì)象,明確哪個(gè)變量時(shí)解釋變量,哪個(gè)變量時(shí)預(yù)報(bào)變量。 ②畫(huà)出確定好的解釋變量和預(yù)報(bào)變量得散點(diǎn)圖,觀察它們之間的關(guān)系; ③由經(jīng)驗(yàn)確定回歸方程的類(lèi)型; ④按一定規(guī)則估計(jì)回歸方程中的參數(shù); ⑤得出結(jié)果后分析殘差圖是否異常。 三、 典型例題 例1 下表是某年美國(guó)舊轎車(chē)價(jià)格的調(diào)查資料,今以x表示轎車(chē)的使用年數(shù),y表示響應(yīng)的年均價(jià)格,求y關(guān)于x的回歸方程 使用年數(shù)x 1 2 3 4 5 6 7 8 9 10 年均價(jià)格y(美元) 2651 1943 1494 1087 765 538 484 290 226 204 分析:由已知表格先畫(huà)出散點(diǎn)圖,可以看出隨著使用年數(shù)的增加,轎車(chē)的平均價(jià)格在遞減,但不在一條直線(xiàn)附近,但據(jù)此認(rèn)為y與x之間具有線(xiàn)性回歸關(guān)系是不科學(xué)的,要根據(jù)圖的形狀進(jìn)行合理轉(zhuǎn)化,轉(zhuǎn)化成線(xiàn)性關(guān)系的變量間的關(guān)系。 解:作出散點(diǎn)圖如下圖 可以發(fā)現(xiàn),各點(diǎn)并不是基本處于一條直線(xiàn)附近,因此,y與x之間應(yīng)是非線(xiàn)性相關(guān)關(guān)系.與已學(xué)函數(shù)圖像比較,用來(lái)刻畫(huà)題中模型更為合理,令,則, 題中數(shù)據(jù)變成如下表所示: x 1 2 3 4 5 6 7 8 9 10 y 7.883 7.572 7.309 6.991 6.640 6.288 6.182 5.670 5.421 5.318 在散點(diǎn)圖中可以看出變換的樣本點(diǎn)分布在一條直線(xiàn)附近,因此可以用線(xiàn)性回歸模型方程擬合,由表中數(shù)據(jù)可得,認(rèn)為x與z之間具有線(xiàn)性相關(guān)關(guān)系,由表中數(shù)據(jù)的所以,最后回代, 即 四、 當(dāng)堂練習(xí): 1 兩個(gè)變量y與x的回歸模型中,分別選擇了4個(gè)不同模型,它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是( ) A 模型1的 B 模型2的 C 模型3的 D模型4的 答案 A 五、 課堂小結(jié) 1 相關(guān)系數(shù)r和相關(guān)指數(shù)R2 2 殘差分析 六、作業(yè)布置 課本90頁(yè)習(xí)題3 3.1.2回歸分析的基本思想及其初步應(yīng)用回歸分析的基本思想及其初步應(yīng)用 課前預(yù)習(xí)學(xué)案 一、預(yù)習(xí)目標(biāo) 1 了解相關(guān)系數(shù)r和相關(guān)指數(shù)R2 2 了解殘差分析 3 了解隨機(jī)誤差產(chǎn)生的原因 二、預(yù)習(xí)內(nèi)容 1 相關(guān)系數(shù)r ① ②r>0表明兩個(gè)變量 ;r<0表明兩個(gè)變量 ;r的絕對(duì)值越接近1,表明兩個(gè)變量相關(guān)性 ,r的絕對(duì)值越接近0,表示兩個(gè)變量之間 當(dāng)r的絕對(duì)值大于 認(rèn)為兩個(gè)變量具有很強(qiáng)的相關(guān)性關(guān)系。 2 隨機(jī)誤差 ①在線(xiàn)性回歸模型:中,a和b為模型的 ,e是y與之間的 ,通常e為隨機(jī)變量,稱(chēng)為隨機(jī)誤差,它的均值E(e)= ,方差D(e)= 0 ②線(xiàn)性回歸模型的完整表達(dá)式為隨機(jī)誤差e的方差越小,通過(guò)回歸直線(xiàn)預(yù)報(bào)真實(shí)值y的精確度 3 殘差分析 ①殘差對(duì)于樣本點(diǎn)而言,相應(yīng)于它們的隨機(jī)誤差為 = = (i=1,2,3,…,n) 其估算值為= = (i=1,2,3,…,n). 稱(chēng)為相應(yīng)于點(diǎn)的殘差。 ②殘差平方和:類(lèi)比樣本方差估計(jì)總體方差的思想,可以用= = (n>2)作為的估計(jì)量,其中, ,稱(chēng)為殘差平方和,可以用衡量回歸方程的預(yù)報(bào)精度,越小,預(yù)報(bào)精度 ③用圖形來(lái)分析殘差特性:用 來(lái)刻畫(huà)回歸的效果。 三、提出問(wèn)題 1 隨機(jī)誤差產(chǎn)生的原因是什么? 2如何建立模型擬合效果最好? 課內(nèi)探究學(xué)習(xí) 一、 學(xué)習(xí)目標(biāo) 1 了解相關(guān)系數(shù)和相關(guān)指數(shù)的關(guān)系. 2 理解隨機(jī)誤差產(chǎn)生的原因.3 3 會(huì)進(jìn)行簡(jiǎn)單的殘差分析 二、學(xué)習(xí)重難點(diǎn) 學(xué)習(xí)重點(diǎn) 1 相關(guān)系數(shù)r 2相關(guān)指數(shù)R2 3 隨機(jī)誤差 學(xué)習(xí)難點(diǎn) 殘差分析的應(yīng)用 三、學(xué)習(xí)過(guò)程 1 相關(guān)系數(shù)r= 2 r的性質(zhì): 3 隨機(jī)誤差的定義: 4相關(guān)指數(shù)R2= 5 R2的性質(zhì): 6 殘差分析的步驟: 四、典型例題 例 隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,城鄉(xiāng)居民的審核水平不斷提高,為研究某市家庭平均收入與月平均生活支出的關(guān)系,該市統(tǒng)計(jì)部門(mén)隨機(jī)調(diào)查10個(gè)家庭,得數(shù)據(jù)如下: 家庭編號(hào) 1 2 3 4 5 6 7 8 9 10 x收入(千元) 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8 y支出千元 0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5 (1) 判斷家庭平均收入與月平均生活支出是否相關(guān)? (2) 若二者線(xiàn)性相關(guān),求回歸直線(xiàn)方程。 思路點(diǎn)撥:利用散點(diǎn)圖觀察收入x和支出y是否線(xiàn)性相關(guān),若呈現(xiàn)線(xiàn)性相關(guān)關(guān)系,可利用公式來(lái)求出回歸系數(shù),然后獲得回歸直線(xiàn)方程。 解:作散點(diǎn)圖 觀察發(fā)現(xiàn)各個(gè)數(shù)據(jù)對(duì)應(yīng)的點(diǎn)都在一條直線(xiàn)附近,所以二者呈現(xiàn)線(xiàn)性相關(guān)關(guān)系。 (2) 所以回歸方程 五、當(dāng)堂練習(xí) 1 山東魯潔棉業(yè)公式的可按人員在7塊并排形狀大小相同的試驗(yàn)田上對(duì)某棉花新品種進(jìn)行施化肥量x對(duì)產(chǎn)量y影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg) 施化肥量x 15 20 25 30 35 40 45 產(chǎn)量y 330 345 365 405 445 450 455 (1) 畫(huà)出散點(diǎn)圖; (2) 判斷是否具有相關(guān)關(guān)系 思路點(diǎn)撥 (1)散點(diǎn)圖如圖所示 (2)由散點(diǎn)圖可知,各組數(shù)據(jù)對(duì)應(yīng)點(diǎn)大致都在一條直線(xiàn)附近,所以施化肥量x與產(chǎn)量y具有線(xiàn)性相關(guān)關(guān)系. 六、課后練習(xí)與提高 1 在對(duì)兩個(gè)變量x、y進(jìn)行線(xiàn)性回歸分析時(shí)有下列步驟: ①對(duì)所求出的回歸方程作出解釋?zhuān)虎谑占瘮?shù)據(jù);③求線(xiàn)性回歸方程;④求相關(guān)系數(shù);⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖。如果根據(jù)可靠性要求能夠作出變量x、y具有線(xiàn)性相關(guān)結(jié)論,則在下列操作順序中正確的是( ) A ①②⑤③④ B ③②④⑤① C ②④③①⑤ D ②⑤④③① 2 三點(diǎn)(3,10),(7,20),(11,24)的線(xiàn)性回歸方程為( ) A B C D 3 對(duì)有線(xiàn)性相關(guān)關(guān)系的兩個(gè)變量建立的回歸直線(xiàn)方程中,回歸系數(shù)b ( ) A.可以大于0 B 大于0 C 能等于0 D只能小于0 4 廢品率和每噸生鐵成本y(元)之間的回歸直線(xiàn)方程為,表明( ) A 廢品率每增加,生鐵成本增加258元; B廢品率每增加,生鐵成本增加2元; C廢品率每增加,生鐵成本每噸增加2元;D廢品率不變,生鐵成本增加256元; 答案 1 D 2 B 3 A 4 C- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年高 數(shù)學(xué) 回歸 分析 基本 思想 及其 初步 應(yīng)用 教學(xué) 新人 選修
鏈接地址:http://kudomayuko.com/p-2592355.html