2019-2020年高考數(shù)學第二輪復習 不等式教學案.doc
《2019-2020年高考數(shù)學第二輪復習 不等式教學案.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學第二輪復習 不等式教學案.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學第二輪復習 不等式教學案 考綱指要: 利用基本不等式解決像函數(shù)的單調(diào)性或解決有關最值問題是考察的重點和熱點,解答題以含參數(shù)的不等式的證明、求解為主. 考點掃描: 1.不等關系 通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景; 2.基本不等式:(a,b≥0) ①探索并了解基本不等式的證明過程; ②會用基本不等式解決簡單的最大(?。﹩栴}。 3.常用的證明不等式的方法:(1)比較法;(2)綜合法;(3)分析法。 4.不等式及它的解法:(1)一元一次不等式; (2)一元二次不等式; (3)分式不等式; (4)簡單的絕對值不等式; (5)指數(shù)不等式;(6)對數(shù)不等式;(7)二元一次不等式(線性規(guī)劃)。 考題先知: 例1. 設函數(shù),其中。 (1)解不等式; (2)當時,求函數(shù)的最小值。 分析:(1)所解不等式即為,從知,實施等價變形后對a分類討論可得解; (2)求函數(shù)的最小值,可從單調(diào)性入手,因此,細化函數(shù)表達(即去絕對值符號)成為解決問題的第一步。 解:(1)由得,,原不等式可化為, 當時,有,而,故; 當時,有; 當時,有,而,故; 綜上所述,當時,解集為;當時,解集為。 (2)由得當時,在為增函數(shù),在為減函數(shù),所以;當時,,所以 ,綜上所述,。 點評:本題第(1)題也可作出函數(shù)與的圖象,利用數(shù)形結(jié)合的數(shù)學思想求之。 例2.已知:且,求證:。 分析:觀察條件不等式的特征,存在不少證法,若從消元角度入手,可構(gòu)造一元二次方程,用判別式法證之;若從基本不等式出發(fā),可用放縮法證之;若著眼,則可用均值換元法證之;若無從下手,則可用分析法或反證法證之;若從不等式的幾何意義出發(fā),又可用幾何法證之。 證一(判別式法):記,則由代入得:,整理得,,得,即。 證二(比較法):,得證。 證三(放縮法):,得證。 證四(換元法):設,則,得證。 證五(分析法):欲證,僅需證,即證 ,顯然成立,因上述過程可逆,故原不等式成立。 證六(反證法):假設,則,即,矛盾,故假設不成立,從而。 證七(幾何法):因為直線上的點到點的最小距離等于 ,所以。 點評:在高考中,不等式的證明常作為某一綜合題的其中一步,放縮與換元是兩種重要的方法,應值得注意。 復習智略: 例3.求使≤a(x>0,y>0)恒成立的a的最小值。 分析:本題實質(zhì)是給定條件求最值的題目,所求a的最值蘊含于恒成立的不等式中,因此需利用不等式的有關性質(zhì)把a呈現(xiàn)出來。 解法一:由于a的值為正數(shù),將已知不等式兩邊平方, 得:x+y+2≤a2(x+y),即2≤(a2-1)(x+y),① ∴x,y>0,∴x+y≥2,② 當且僅當x=y時,②中有等號成立。 比較①、②得a的最小值滿足a2-1=1, ∴a2=2,a= (因a>0),∴a的最小值是。 解法二:設 ∵x>0,y>0,∴x+y≥2 (當x=y時“=”成立),∴≤1,的最大值是1。 從而可知,u的最大值為,又由已知,得a≥u,∴a的最小值為, 解法三:∵y>0,∴原不等式可化為+1≤a,設=tanθ,θ∈(0,)。 ∴tanθ+1≤a,即tanθ+1≤asecθ ∴a≥sinθ+cosθ=sin(θ+), ③ 又∵sin(θ+)的最大值為1(此時θ=),由③式可知a的最小值為。 點評:本題解法三利用三角換元后確定a的取值范圍,此時我們習慣是將x、y與cosθ、sinθ來對應進行換元,即令=cosθ,=sinθ(0<θ<,這樣也得a≥sinθ+cosθ,但是這種換元是錯誤的 其原因是:(1)縮小了x、y的范圍;(2)這樣換元相當于本題又增加了“x、y1”這樣一個條件,顯然這是不對的。 除了解法一經(jīng)常用的重要不等式外,解法二的方法也很典型,即若參數(shù)a滿足不等關系,a≥f(x),則amin=f(x)max 若 a≤f(x),則amax=f(x)min,利用這一基本事實,可以較輕松地解決這一類不等式中所含參數(shù)的值域問題。還有三角換元法求最值用的恰當好處,可以把原問題轉(zhuǎn)化。 檢測評估: 1、設關于的不等式和的解集分別是、。下列說法中不正確的是( ) (A)不存在一個常數(shù)使得、同時為. (B)至少存在一個常數(shù)使得、都是僅含有一個元素的集合. (C)當、都是僅含有一個元素的集合時,總有. (D)當、都是僅含有一個元素的集合時,總有. 2.若對任意,不等式恒成立,則實數(shù)的取值范圍是 ( ) A. B. C. D. 3.已知x、y滿足約束條件則(x+3)2+y2的最小值為 A. B.2 C.8 D.10 4.已知兩個正數(shù)滿足,則取最小值時的值分別為 ( ) A. B. C. D. 5.設定義域為的函數(shù)滿足以下條件:①對任意;②對任意當時,有,則以下不等式不一定成立的是( ) A、 B、 C、 D、 6.已知時,不等式恒成立,則實數(shù)的取值范圍是 7.取得,原不等式化為,從而,得。 8.設函數(shù)f(x)=,已知f(a)>1,則a的取值范圍是 9. 系數(shù)方程的一個根大于0且小于1,另一根大于1且小于2,則的取值范圍是______________. 10.設,則的最小值是 。 11. 已知 ; (1).當時,求的最小值; (2).若不等式,對恒成立,求的取值范圍。 12.對1個單位質(zhì)量的含污物體進行清洗,清洗前其清潔度(含污物體的清潔度定義為: 為,要求清洗完后的清潔度為。有兩種方案可供選擇,方案甲:一次清洗;方案乙: 分兩次清洗。該物體初次清洗后受殘留水等因素影響,其質(zhì)量變?yōu)椤TO用單位質(zhì)量的水初次清洗后的清潔度是,用單位質(zhì)量的水第二次清洗后的清潔度是,其中是該物體初次清洗后的清潔度。 (Ⅰ)分別求出方案甲以及時方案乙的用水量, 并比較哪一種方案用水量較少; (Ⅱ)若采用方案乙,當為某固定值時,如何安排初次與第二次清洗的用水量,使總用水量最小? 并討論取不同數(shù)值時對最少總用水量多少的影響。 點撥與全解: 1.由得時,集合A僅含有一個元素;由得或6, 集合B僅含有一個元素。說法中不正確的是C。 2.解:記,則由條件得,解之得,故選B。 3.作出如圖所示的可行區(qū)域,知(x+3)2+y2的最小值為|AC|2=10.故選D。 4.由得,所以當,即時,取最小值25,故選B。 5.解:因,且,而在區(qū)間的單調(diào)性無法確定,所以無法判斷,故選C。 6.解:原不等式可化為,當時,不等式顯然成立;當時,,而函數(shù)在上單調(diào)遞減,故,所以。 7.f(x)是定義在(0,+∞)上的增函數(shù),對正實數(shù)x,y都有:f(xy)=f(x)+f(y)成立,則不等式f(log2x)<0的解集為_________ 8.解析 由f(x)及f(a)>1可得 ① 或 ② 或 ③ 解①得a<-2,解②得-<a<1,解③得x∈ ∴a的取值范圍是(-∞,-2)∪(-,1) 9.解:由條件得:,作出以為坐標的線性區(qū)域,而表示在可行區(qū)域內(nèi)的動點與定點之間的斜率,從而可得其范圍是。 10.解:顯然取此時,所以當時,有最小值。 解:(1). 當時, ,∴當,即時,; (2).由,得,設則 ,即或,或。由于,故顯然不成立,于是問題轉(zhuǎn)化為:若對恒成立,確定的取值范圍。 設,則,∴當時,為減函數(shù);當時,為增函數(shù),當時,為極小值,這樣,對有①,或②,或③ 12.解:(Ⅰ)設方案甲與方案乙的用水量分別為x與z,由題設有=0.99,解得x=19。 由得方案乙初次用水量為3, 第二次用水量y滿足方程: 解得y=4,故z=4+3.即兩種方案的用水量分別為19與4+3。 因為當,故方案乙的用水量較少。 (II)設初次與第二次清洗的用水量分別為與,類似(I)得,(*), 于是+, 當為定值時,, 當且僅當時等號成立。 此時 將代入(*)式得 故時總用水量最少, 此時第一次與第二次用水量分別為: , 最少總用水量是. 當,故T()是增函數(shù)(也可以用二次函數(shù)的單調(diào)性判斷)。這說明,隨著的值的最少總用水量, 最少總用水量最少總用水量。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學第二輪復習 不等式教學案 2019 2020 年高 數(shù)學 二輪 復習 不等式 教學
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://kudomayuko.com/p-2626533.html