2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第7講 正態(tài)分布教案 理 新人教版.doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第7講 正態(tài)分布教案 理 新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第7講 正態(tài)分布教案 理 新人教版.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第7講 正態(tài)分布教案 理 新人教版 【xx年高考會(huì)這樣考】 利用實(shí)際問(wèn)題的直方圖,了解正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義. 【復(fù)習(xí)指導(dǎo)】 掌握好正態(tài)密度曲線的特點(diǎn),尤其是其中的參數(shù)μ、σ的含義,會(huì)由其對(duì)稱性求解隨機(jī)變量在特定區(qū)間上的概率. 基礎(chǔ)梳理 1.正態(tài)曲線及性質(zhì) (1)正態(tài)曲線的定義 函數(shù)φμ,σ(x)=e-, x∈(-∞,+∞),其中實(shí)數(shù)μ和σ(σ>0)為參數(shù),我們稱φμ,σ(x)的圖象(如圖)為正態(tài)分布密度曲線,簡(jiǎn)稱正態(tài)曲線. (2)正態(tài)曲線的解析式 ①指數(shù)的自變量是x定義域是R,即x∈(-∞,+∞). ②解析式中含有兩個(gè)常數(shù):π和e,這是兩個(gè)無(wú)理數(shù). ③解析式中含有兩個(gè)參數(shù):μ和σ,其中μ可取任意實(shí)數(shù),σ>0這是正態(tài)分布的兩個(gè)特征數(shù). ④解析式前面有一個(gè)系數(shù)為,后面是一個(gè)以e為底數(shù)的指數(shù)函數(shù)的形式,冪指數(shù)為-. 六條性質(zhì) 正態(tài)曲線的性質(zhì) 正態(tài)曲線φμ,σ(x)=e-,x∈R有以下性質(zhì): (1)曲線位于x軸上方,與x軸不相交; (2)曲線是單峰的,它關(guān)于直線x=μ對(duì)稱; (3)曲線在x=μ處達(dá)到峰值; (4)曲線與x軸圍成的圖形的面積為1; (5)當(dāng)σ一定時(shí),曲線隨著μ的變化而沿x軸平移; (6)當(dāng)μ一定時(shí),曲線的形狀由σ確定,σ越小,曲線越“瘦高”,表示總體的分布越集中;σ越大,曲線越“矮胖”,表示總體的分布越分散. 三個(gè)鄰域 會(huì)用正態(tài)總體在三個(gè)特殊區(qū)間內(nèi)取值的概率值結(jié)合正態(tài)曲線求隨機(jī)變量的概率.落在三個(gè)鄰域之外是小概率事件,這也是對(duì)產(chǎn)品進(jìn)行質(zhì)量檢測(cè)的理論依據(jù). 雙基自測(cè) 1.設(shè)有一正態(tài)總體,它的概率密度曲線是函數(shù)f(x)的圖象,且f(x)=e-,則這個(gè)正態(tài)總體的平均數(shù)與標(biāo)準(zhǔn)差分別是( ). A.10與8 B.10與2 C.8與10 D.2與10 解析 由e-=e-,可知σ=2,μ=10. 答案 B 2.(xx湖北)已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<4)=0.8,則P(0<ξ<2)等于( ). A.0.6 B.0.4 C.0.3 D.0.2 解析 由P(ξ<4)=0.8知P(ξ>4)=P(ξ<0)=0.2, 故P(0<ξ<2)=0.3.故選C. 答案 C 3.(xx廣東)已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.682 6,則P(X>4)等于( ). A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 5 解析 由正態(tài)曲線性質(zhì)知,其圖象關(guān)于直線x=3對(duì)稱,∴P(X>4)=0.5-P(2≤X≤4)=0.5-0.682 6=0.158 7.故選B. 答案 B 4.(xx山東)已知隨機(jī)變量X服從正態(tài)分布N(0,σ2),若P(X>2)=0.023,則P(-2≤X≤2)等于( ). A.0.477 B.0.628 C.0.954 D.0.977 解析 P(-2≤X≤2)=1-2P(X>2)=0.954. 答案 C 5.設(shè)隨機(jī)變量X服從正態(tài)分布N(2,9),若P(X>c+1)=P(X- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第7講正態(tài)分布教案 新人教版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 第十二 概率 隨機(jī)變量 及其 分布 正態(tài)分布 教案 新人
鏈接地址:http://kudomayuko.com/p-2628134.html