2019-2020年高三數(shù)學(xué)下學(xué)期開學(xué)考試試題 文(III).doc
《2019-2020年高三數(shù)學(xué)下學(xué)期開學(xué)考試試題 文(III).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)下學(xué)期開學(xué)考試試題 文(III).doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)下學(xué)期開學(xué)考試試題 文(III) 一、選擇題(共12個(gè)小題,每小題5分,計(jì)60分. 在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1. 已知全集U=R, , ,則= A.{x|x≥l} B.{x|1≤x2} C.{x|0≤xl} D.{x| Ox≤l} 2. 復(fù)數(shù),,則 A.1 B. C. D. 3.如果輸出的函數(shù)值在區(qū)間內(nèi),則輸入的實(shí)數(shù)x的取值范圍是 A. B. C. D. 4. 若,是第三象限的角,則 A. B. C. D. 正視圖 側(cè)視圖 俯視圖 5.某長(zhǎng)方體的三視圖如右圖,長(zhǎng)度為的體對(duì)角線在正視圖中的投影長(zhǎng)度為, 在側(cè)視圖中的投影長(zhǎng)度為,則該長(zhǎng)方體的全面積為 A. B. C.6 D.10 6.已知,記數(shù)列的前n項(xiàng)和為, 則使的n 的最小值為 A.13 B.12 C.11 D.10 7.已知雙曲線的離心率為2,則的值為 A. B. C. D. 8. 盛有水的圓柱形容器的內(nèi)壁底面半徑為5cm, 兩個(gè)直徑為5cm的玻璃小球都浸沒(méi)于水中,若取出這兩個(gè)小球,則水面將下降( )cm. A . B. C. 2 D. 3 9.函數(shù),的圖像可能是下列圖形中的 10. 過(guò)拋物線的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線 A.有且僅有一條 B.有且僅有兩條 C.有無(wú)窮多條 D.不存在 11.定義在上的函數(shù),是它的導(dǎo)函數(shù),且恒有成立,則 A. B. C. D. 12.已知條件的一個(gè)充分不必要條件是,則的取值范圍是 A. B. C. D . 第二部分(非選擇題 共90分) 本卷包括必考題和選考題兩個(gè)部分. 第13題---第21題為必考題,每個(gè)考生都必須作答. 第22題---第24題為選考題,考生根據(jù)要求作答. 二、填空題(共4個(gè)小題,每小題5分,計(jì)20分) 13.在平面直角坐標(biāo)系中,不等式組 (為常數(shù))表示的平面區(qū)域的面積是9,那么實(shí)數(shù)的值為 . 14.已知向量且A,B,C三點(diǎn)共線,則k= . 15.在△ABC中,BD為∠ABC的平分線,AB=3,BC=2,AC=,則sin ∠ABD等于 . 16. 已知數(shù)列的前項(xiàng)和構(gòu)成數(shù)列,若,則數(shù)列的通項(xiàng)公式________. 三、解答題(共6小題,計(jì)70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟) 17.(本小題滿分12分) 已知函數(shù). (Ⅰ)求函數(shù)圖像的對(duì)稱中心; (Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值. 75 80 85 90 95 100 分?jǐn)?shù) 0.01 0.02 0.04 0.06 0.07 0.03 0.05 18.(本小題滿分12分) 某高校在xx年的自主招生考試成績(jī)中隨機(jī) 抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組: 第1組[75,80),第2組[80,85),第3組 [85,90),第4組[90,95),第5組[95,100] 得到的頻率分布直方圖如圖所示. (Ⅰ)分別求第3,4,5組的頻率; (Ⅱ)若該校決定在筆試成績(jī)高的第3,4,5組 中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試? (Ⅲ)在(Ⅱ)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率. 19.(本小題滿分12分) 如圖,設(shè)四棱錐的底面為菱形, 且∠,,. (Ⅰ)求證:平面平面; (Ⅱ)設(shè)P為SD的中點(diǎn),求三棱錐的體積. 20.(本小題滿分12分) 設(shè)函數(shù) (Ⅰ)若=,求的單調(diào)區(qū)間; (Ⅱ)若當(dāng)≥0時(shí),≥0,求的取值范圍. 21.(本小題滿分12分) 已知橢圓C: 的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N(如圖). (Ⅰ)求橢圓C的方程; (Ⅱ)求的最小值,并求此時(shí)圓T的方程; (Ⅲ)設(shè)點(diǎn)P是橢圓C 上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn).求證:為定值. 請(qǐng)考生從第22、23、24三題中任選一題作答. 注意:只能做所選定的題目,如果多做,則按所做的第一個(gè)題目計(jì)分,作答時(shí)請(qǐng)用2B鉛筆在答題卡上將所選題號(hào)后的方框涂黑. 22.(本小題滿分10分)選修4—1:幾何證明選講 A B C O D E P 如圖,已知切⊙于點(diǎn)E,割線PBA交⊙于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.求證: (Ⅰ); (Ⅱ). 23.(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程 已知直線: , 圓:. (Ⅰ)當(dāng)=時(shí),求與的交點(diǎn)坐標(biāo): (Ⅱ)過(guò)坐標(biāo)原點(diǎn)O做的垂線,垂足為A,P為OA的中點(diǎn),當(dāng)變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線. 24.(本小題滿分10分)選修4—5:不等式選講 設(shè)函數(shù). (Ⅰ)畫出函數(shù)的圖像; (Ⅱ)若不等式的解集非空,求的取值范圍. 文科數(shù)學(xué)參考答案 一、選擇題(本大題共12小題,每小題5分,共60分。在每小題列出的四個(gè)選項(xiàng)中,只有一項(xiàng)最符合題意) 題號(hào) 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A B B B C C B C B D A 二、填空題(共4個(gè)小題,每小題5分,計(jì)20分) 13. 1 ; 14. ; 15. ; 16. 三、解答題(共6小題,計(jì)70分.解答應(yīng)寫出相應(yīng)的文字說(shuō)明,證明過(guò)程或演算步驟) 17. (本小題滿分12分) 解:(Ⅰ) ………3分 函數(shù)圖像的對(duì)稱中心是 ………6分 (Ⅱ) ………12分 18.(本小題滿分12分) 解:(Ⅰ)由題設(shè)可知,第組的頻率為, 第組的頻率為, 第組的頻率為. ……………………3分 (Ⅱ)第組的人數(shù)為, 第組的人數(shù)為, 第組的人數(shù)為.因?yàn)榈?,,組共有名學(xué)生, 所以利用分層抽樣在名學(xué)生中抽取名學(xué)生,每組抽取的人數(shù)分別為: 第組:, 第組:,第組:. 所以第,,組分別抽取人,人,人. …………………7分 (Ⅲ)設(shè)第組的位同學(xué)為,,, 第組的位同學(xué)為,,第組的位同學(xué)為. 則從六位同學(xué)中抽兩位同學(xué)有: 共種可能. ……………9分 其中第組的位同學(xué)為,至少有一位同學(xué)入選的有: 共種可能, ……………11分 所以第組至少有一名學(xué)生被甲考官面試的概率為. ………12分 19.(本小題滿分12分) (Ⅰ)證明:連接,取的中點(diǎn),連接、,, ,,, 又四棱錐的底面為菱形,且∠, 是等邊三角形,, 又,,, 面 ………6分 (Ⅱ)==-== ………12分 20. (本小題滿分12分) 解:(Ⅰ)時(shí),, 當(dāng)時(shí);當(dāng)時(shí),;當(dāng)時(shí), 故在,單調(diào)增加,在(-1,0)單調(diào)減少 ………6分 (Ⅱ) 令,則 若,則當(dāng)時(shí),,為增函數(shù), 而,,從而當(dāng)x≥0時(shí)≥0. 若,則當(dāng)時(shí),,為減函數(shù),而,從而當(dāng)時(shí) <0,即<0,不合題意.綜合得的取值范圍為 ……12分 21.(本小題滿分12分) 解:(I)由題意知解之得;,由得b=1, 故橢圓C方程為; …………3分 (II)設(shè) 此時(shí) 圓T的方程為 ……8分 (Ⅲ)設(shè) 由M,P,R三點(diǎn)共線可得 同理可得 為定值 ……12分 22.證明:(Ⅰ)切⊙于點(diǎn), 平分 , ………………5分 (Ⅱ) ∽, 同理∽, ………………10分 23.解:(I)當(dāng)時(shí),C1的普通方程為,C2的普通方程為. 聯(lián)立方程組解得C1與C2的交點(diǎn)為(1,0),…………5分 (II)C1的普通方程為. A點(diǎn)坐標(biāo)為,故當(dāng)變化時(shí),P點(diǎn)軌跡的參數(shù)方程為 (為參數(shù))P點(diǎn)軌跡的普通方程為 故P點(diǎn)軌跡是圓心為,半徑為的圓 …………10分 24.解:(Ⅰ)由于=則函數(shù)的圖像如圖所示 …………5分 (Ⅱ)由函數(shù)與函數(shù)的圖像可知,當(dāng)且僅當(dāng)或時(shí),函數(shù)與函數(shù)的圖像有交點(diǎn),故不等式的解集非空時(shí),a的取值范圍為 ……10分- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)下學(xué)期開學(xué)考試試題 文III 2019 2020 年高 數(shù)學(xué) 學(xué)期 開學(xué) 考試 試題 III
鏈接地址:http://kudomayuko.com/p-2744002.html