2019屆高考數(shù)學(xué)全冊(cè)精準(zhǔn)培優(yōu)專練(打包20套)理.zip
2019屆高考數(shù)學(xué)全冊(cè)精準(zhǔn)培優(yōu)專練(打包20套)理.zip,2019,高考,數(shù)學(xué),精準(zhǔn),培優(yōu)專練,打包,20
培優(yōu)點(diǎn)十六 利用空間向量求夾角
1.利用面面垂直建系
例1:在如圖所示的多面體中,平面平面,四邊形為邊長(zhǎng)為2的菱形,
為直角梯形,四邊形為平行四邊形,且,,.
(1)若,分別為,的中點(diǎn),求證:平面;
(2)若,與平面所成角的正弦值為,求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】(1)連接,∵四邊形為菱形,∴.
∵平面平面,平面平面,平面,,
∴平面.又平面,∴.
∵,∴.∵,∴平面.
∵分別為,的中點(diǎn),∴,∴平面.
(2)設(shè),由(1)得平面,
由,,得,.
過(guò)點(diǎn)作,與的延長(zhǎng)線交于點(diǎn),取的中點(diǎn),連接,,
如圖所示,
又,∴為等邊三角形,∴,
又平面平面,平面平面,平面,
故平面.
∵為平行四邊形,∴,∴平面.
又∵,∴平面.
∵,∴平面平面.
由(1),得平面,∴平面,∴.
∵,∴平面,∴是與平面所成角.
∵,,∴平面,平面,∵,
∴平面平面.
∴,,解得.
在梯形中,易證,
分別以,,的正方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.
則,,,,,,
由,及,得,
∴,,.
設(shè)平面的一個(gè)法向量為,由得,
令,得
設(shè)平面的一個(gè)法向量為,由得,
令,得.∴,
又∵二面角是鈍角,∴二面角的余弦值是.
2.線段上的動(dòng)點(diǎn)問(wèn)題
例2:如圖,在中,,,,沿將翻折到的位置,
使平面平面.
(1)求證:平面;
(2)若在線段上有一點(diǎn)滿足,且二面角的大小為,
求的值.
【答案】(1)見(jiàn)解析;(2).
【解析】(1)中,由余弦定理,可得.∴,
∴,∴.作于點(diǎn),
∵平面平面,平面平面,∴平面.
∵平面,∴.
又∵,,∴平面.
又∵平面,∴.
又,,∴平面.
(2)由(1)知,,兩兩垂直,以為原點(diǎn),以方向?yàn)檩S正方向建立如圖所示空間直角坐標(biāo)系,
則,,.設(shè),
則由,
設(shè)平面的一個(gè)法向量為,
則由,
取.平面的一個(gè)法向量可取,
∴.
∵,∴.
3.翻折類問(wèn)題
例3:如圖1,在邊長(zhǎng)為2的正方形中,為中點(diǎn),分別將,沿,所在直線折疊,使點(diǎn)與點(diǎn)重合于點(diǎn),如圖2.在三棱錐中,為中點(diǎn).
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)求二面角的大小.
【答案】(1)見(jiàn)解析;(2);(3).
【解析】(1)在正方形中,為中點(diǎn),,,
∴在三棱錐中,,.
∵,∴平面.
∵平面,∴.
(2)取中點(diǎn),連接,取中點(diǎn),連接.
過(guò)點(diǎn)作的平行線.
∵平面,∴,.
∵,為的中點(diǎn),∴.∴.
如圖所示,建立空間直角坐標(biāo)系.
,,,.
∵,為的中點(diǎn),∴.
∵平面,平面,∴平面平面.
∵平面平面,平面,
∴平面.∵.
∴平面的法向量..
設(shè)直線與平面所成角為,則.
∴直線與平面所成角的正弦值為.
(3)由(2)知,,.
設(shè)平面的法向量為,則有即,
令,則,.即.∴.
由題知二面角為銳角,∴它的大小為.
對(duì)點(diǎn)增分集訓(xùn)
一、單選題
1.如圖,在所有棱長(zhǎng)均為的直三棱柱中,,分別為,的中點(diǎn),則異面直線,所成角的余弦值為( )
A. B. C. D.
【答案】C
【解析】設(shè)的中點(diǎn),以,,為,,軸建立坐標(biāo)系,
則,,,,
則,,
設(shè)與成的角為,則,故選C.
2.在三棱柱中,底面是邊長(zhǎng)為1的正三角形,側(cè)棱底面,點(diǎn)在棱上,
且,若與平面所成的角為,則的值是( )
A. B. C. D.
【答案】D
【解析】如圖,建立空間直角坐標(biāo)系,易求點(diǎn).
平面的一個(gè)法向量是,∴,則.故選D.
3.如圖,圓錐的底面直徑,高,為底面圓周上的一點(diǎn),,則空間中兩條直線與所成的角為( )
A. B. C. D.
【答案】B
【解析】取中點(diǎn),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,
如圖所示,
∵圓錐的底面直徑,高,為底面圓周上的一點(diǎn),,
∴可得,,,,
則,,
設(shè)空間兩條直線與所成的角為,∴,
∴,即直線與所成的角為,故選B.
4.已知四棱錐的底面是邊長(zhǎng)為2的正方形,,平面平面,是的中點(diǎn),是的中點(diǎn),則直線與平面所成角的正弦值是( )
A. B. C. D.
【答案】D
【解析】由題可知,,,,
則,,
∵是的中點(diǎn),∴,
設(shè)平面的法向量,直線與平面所成角為,
則可取,,故選D.
5.如圖,在直三棱柱中,,,點(diǎn)與分別是和的中點(diǎn),點(diǎn)與分別是和上的動(dòng)點(diǎn).若,則線段長(zhǎng)度的最小值為( )
A. B. C. D.
【答案】A
【解析】建立如圖所示的空間直角坐標(biāo)系,
則,,,,,
則,,
由于,∴,∴,
故,
∴當(dāng)時(shí),線段長(zhǎng)度取得最小值,且最小值為.故選A.
6.如圖,點(diǎn)分別在空間直角坐標(biāo)系的三條坐標(biāo)軸上,,平面的法向量為,設(shè)二面角的大小為,則( )
A. B. C. D.
【答案】C
【解析】由題意可知,平面的一個(gè)法向量為:,
由空間向量的結(jié)論可得:.故選C.
7.如圖所示,五面體中,正的邊長(zhǎng)為1,平面,,且.
設(shè)與平面所成的角為,,若,則當(dāng)取最大值時(shí),平面與平面所成角的正切值為( )
A. B.1 C. D.
【答案】C
【解析】如圖所示,建立如圖所示的空間直角坐標(biāo)系,
則,,,,
取的中點(diǎn),則,則平面的一個(gè)法向量為,
由題意,
又由,∴,解得,∴的最大值為,
當(dāng)時(shí),設(shè)平面的法向量為,
則,
取,由平面的法向量為,
設(shè)平面和平面所成的角為,
則,∴,∴,故選C.
8.已知三棱柱的側(cè)棱與底面邊長(zhǎng)都相等,在底面內(nèi)的射影為的中心,
則與底面所成角的正弦值等于( )
A. B. C. D.
【答案】B
【解析】如圖,設(shè)在平面內(nèi)的射影為,以為坐標(biāo)原點(diǎn),、分別為軸、軸建立空間直角坐標(biāo)系如圖.
設(shè)邊長(zhǎng)為1,則,,
∴.又平面的法向量為.
設(shè)與底面所成角為,則.
故直線與底面所成角的正弦值為.故選B.
9.如圖,四棱錐中,平面,底面為直角梯形,,,,點(diǎn)在棱上,且,則平面與平面的夾角的余弦值為( )
A. B. C. D.
【答案】B
【解析】以為坐標(biāo)原點(diǎn),以、、所在直線為、、軸,
建立空間直角坐標(biāo)系,
則,,,,,∴,
設(shè)平面的一個(gè)法向量為,則,
取,得,平面的法向量為,
∴.∴平面與平面的夾角的余弦值為.故選B.
10.在正方體中,直線與平面所成角的余弦值為( )
A. B. C. D.
【答案】C
【解析】分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系:
設(shè)正方體的棱長(zhǎng)為1,可得,,,,
∴,,,
設(shè)是平面的一個(gè)法向量,∴,即,
取,得,∴平面的一個(gè)法向量為,
設(shè)直線與平面所成角為,∴;
∴,即直線與平面所成角的余弦值是.故選C.
11.已知四邊形,,,現(xiàn)將沿折起,使二面角
的大小在內(nèi),則直線與所成角的余弦值取值范圍是( )
A. B. C. D.
【答案】A
【解析】取中點(diǎn),連結(jié),,
∵.,∴,,且,,
∴是二面角的平面角,
以為原點(diǎn),為軸,為軸,
過(guò)點(diǎn)作平面的垂線為軸,建立空間直角坐標(biāo)系,
,,,
設(shè)二面角的平面角為,則,
連、,則,,
∴,,
設(shè)、的夾角為,則,
∵,∴,
故,∴.故選A.
12.正方體中,點(diǎn)在上運(yùn)動(dòng)(包括端點(diǎn)),則與AD1所成角的取值范圍是( )
A. B. C. D.
【答案】D
【解析】以點(diǎn)為原點(diǎn),、、所在直線分別為軸建立空間直角坐標(biāo)系,設(shè)正方體棱長(zhǎng)為1,點(diǎn)坐標(biāo)為,
則,,
設(shè)、的夾角為,
則,
∴當(dāng)時(shí),取最大值,.
當(dāng)時(shí),取最小值,.
∵,∴與所成角的取值范圍是.故選D.
二、填空題
13.如圖,在直三棱柱中,,,是的中點(diǎn),則異面直線與所成角的余弦值為_(kāi)_______.
【答案】
【解析】在直三棱柱中,,,是的中點(diǎn),∴,.
以為原點(diǎn),為軸,為軸,過(guò)作的垂線為軸,
建立空間直角坐標(biāo)系,
則,,,,
∴,,
設(shè)異面直線與所成角為,則.
∴異面直線與所成角的余弦值為.
14.已知四棱錐的底面是菱形,,平面,且,點(diǎn)是棱的中點(diǎn),在棱上,若,則直線與平面所成角的正弦值為_(kāi)_________.
【答案】
【解析】以點(diǎn)建立如圖所示的空間直角坐標(biāo)系,設(shè)菱形的邊長(zhǎng)為2,
則, ,,∴,
平面的一個(gè)法向量為,
則,
即直線與平面所成角的正弦值為.
15.設(shè),是直線,,是平面,,,向量在上,向量在上,,,則,所成二面角中較小的一個(gè)的余弦值為_(kāi)_______.
【答案】
【解析】由題意,∵,,
∴,
∵,,向量在上,向量在上,
∴,所成二面角中較小的一個(gè)余弦值為,故答案為.
16.在四棱錐中,底面為平行四邊形,平面,,,,,則當(dāng)變化時(shí),直線與平面所成角的取值范圍是__________.
【答案】
【解析】如圖建立空間直角坐標(biāo)系,得,,,,
設(shè)平面的法向量,,,
∴,得,
又,∴,
∴,
∴,則
三、解答題
17.如圖所示:四棱錐,底面為四邊形,,,,平面平面,,,,
(1)求證:平面;
(2)若四邊形中,,是否在上存在一點(diǎn),使得直線與平面
所成的角的正弦值為,若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)存在,.
【解析】(1)設(shè),連接
,為中點(diǎn)
又,
∵平面平面,平面平面
平面,而平面
在中,由余弦定理得,
,而
平面.
(2)過(guò)作垂線記為軸,為軸,為軸建立空間直角坐標(biāo)系:
,,,,
,,設(shè)
,
設(shè)平面法向量為,
∴,取,
設(shè)與平面所成角為,
,
解,.
18.如圖,在斜三棱柱中,底面是邊長(zhǎng)為2的正三角形,,,.
(1)求證:平面平面;
(2)求二面角的正弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】(1)取的中點(diǎn),連接,,
∵底面是邊長(zhǎng)為2的正三角形,∴,且,
∵,,,∴,
∴,又∵,∴,
∴,又∵,∴平面,又∵平面,
∴平面平面.
(2)如圖所示,
以點(diǎn)為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,其中,
則,,,,
∴,,,
設(shè)為平面的法向量,
則,即,令,得;
設(shè)為平面的法向量,則,即,
令,得;∴,
∴二面角的正弦值為.
22
培優(yōu)點(diǎn)一 函數(shù)的圖象與性質(zhì)
1.單調(diào)性的判斷
例1:(1)函數(shù)的單調(diào)遞增區(qū)間是( )
A. B. C. D.
(2)的單調(diào)遞增區(qū)間為_(kāi)_______.
【答案】(1)D;(2),
【解析】(1)因?yàn)?,在定義域上是減函數(shù),所以求原函數(shù)的單調(diào)遞增區(qū)間,
即求函數(shù)的單調(diào)遞減區(qū)間,結(jié)合函數(shù)的定義域,可知所求區(qū)間為.
(2)由題意知,當(dāng)時(shí),;當(dāng)時(shí),,二次函數(shù)的圖象如圖.
由圖象可知,函數(shù)在,上是增函數(shù).
2.利用單調(diào)性求最值
例2:函數(shù)的最小值為_(kāi)_______.
【答案】1
【解析】易知函數(shù)在上為增函數(shù),∴時(shí),.
3.利用單調(diào)性比較大小、解抽象函數(shù)不等式
例3:(1)已知函數(shù)的圖象向左平移1個(gè)單位后關(guān)于軸對(duì)稱,當(dāng)時(shí),恒成立,設(shè),,,則,,的大小關(guān)系為
( )
A. B. C. D.
(2)定義在R上的奇函數(shù)在上遞增,且,則滿足的的集合為_(kāi)_______________.
【答案】(1)D;(2)
【解析】(1)根據(jù)已知可得函數(shù)的圖象關(guān)于直線對(duì)稱,且在上是減函數(shù),
因?yàn)椋?,所以?
(2)由題意知,,由得或
解得或.
4.奇偶性
例4:已知偶函數(shù)在區(qū)間上單調(diào)遞增,則滿足的的取值范圍是( )
A. B. C. D.
【答案】A
【解析】因?yàn)槭桥己瘮?shù),所以其圖象關(guān)于軸對(duì)稱,又在上單調(diào)遞增,
,所以,所以.
5.軸對(duì)稱
例5:已知定義域?yàn)榈暮瘮?shù)在上只有1和3兩個(gè)零點(diǎn),且與都是偶函數(shù),則函數(shù)在上的零點(diǎn)個(gè)數(shù)為( )
A.404 B.804 C.806 D.402
【答案】C
【解析】,為偶函數(shù),,關(guān)于
,軸對(duì)稱,為周期函數(shù),且,
將劃分為
關(guān)于,軸對(duì)稱,
,,
在中只含有四個(gè)零點(diǎn),而共201組
所以;在中,含有零點(diǎn),共兩個(gè),
所以一共有806個(gè)零點(diǎn)
6.中心對(duì)稱
例6:函數(shù)的定義域?yàn)?,若與都是奇函數(shù),則( )
A.是偶函數(shù) B.是奇函數(shù)
C. D.是奇函數(shù)
【答案】D
【解析】從已知條件入手可先看的性質(zhì),由,為奇函數(shù)分別可得到:,,所以關(guān)于,中心對(duì)稱,雙對(duì)稱出周期可求得,所以C不正確,且由已知條件無(wú)法推出一定符合A,B.
對(duì)于D選項(xiàng),因?yàn)?,所以,進(jìn)而可推出關(guān)于中心對(duì)稱,
所以為圖像向左平移3個(gè)單位,即關(guān)于對(duì)稱,所以為奇函數(shù),D正確.
7.周期性的應(yīng)用
例7:已知是定義在上的偶函數(shù),是定義在上的奇函數(shù),且,
則的值為( )
A. B.1 C.0 D.無(wú)法計(jì)算
【答案】C
【解析】由題意,得,∵是定義在上的偶函數(shù),是定義在上的奇函數(shù),
∴,,∴,
∴,∴,∴的周期為4,
∴,,
又∵,∴.
對(duì)點(diǎn)增分集訓(xùn)
一、選擇題
1.若函數(shù)的單調(diào)遞增區(qū)間是,則的值為( )
A. B.2 C. D.6
【答案】C
【解析】由圖象易知函數(shù)的單調(diào)增區(qū)間是,令,∴.
2.已知函數(shù)在上是增函數(shù),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】要使在上是增函數(shù),則且,即.
3.設(shè)函數(shù),則是( )
A.奇函數(shù),且在內(nèi)是增函數(shù)
B.奇函數(shù),且在內(nèi)是減函數(shù)
C.偶函數(shù),且在內(nèi)是增函數(shù)
D.偶函數(shù),且在內(nèi)是減函數(shù)
【答案】A
【解析】易知的定義域?yàn)?,且,則為奇函數(shù),
又在上是增函數(shù),所以在上是增函數(shù).
4.已知函數(shù)的圖象關(guān)于對(duì)稱,且在上單調(diào)遞增,設(shè),,
,則,,的大小關(guān)系為( )
A. B. C. D.
【答案】B
【解析】∵函數(shù)圖象關(guān)于對(duì)稱,∴,又在上單調(diào)遞增,
∴,即,故選B.
5.已知是奇函數(shù),是偶函數(shù),且,,則等于( )
A.4 B.3 C.2 D.1
【答案】B
【解析】由已知得,,則有解得,故選B.
6.函數(shù)的圖象可能為( )
【答案】D
【解析】因?yàn)?,且,所以函?shù)為奇函數(shù),排除A,B.當(dāng)時(shí),,排除C,故選D.
7.奇函數(shù)的定義域?yàn)?,若為偶函?shù),且,則的值為( )
A.2 B.1 C. D.
【答案】A
【解析】∵為偶函數(shù),∴,則,
又為奇函數(shù),則,且.
從而,的周期為4.
∴,故選A.
8.函數(shù)的圖象向右平移1個(gè)單位,所得圖象與曲線關(guān)于軸對(duì)稱,則的解析式為( )
A. B. C. D.
【答案】D
【解析】與的圖象關(guān)于軸對(duì)稱的函數(shù)為.依題意,的圖象向右平移一個(gè)單位,
得的圖象.∴的圖象由的圖象向左平移一個(gè)單位得到.∴.
9.使成立的的取值范圍是( )
A. B. C. D.
【答案】A
【解析】在同一坐標(biāo)系內(nèi)作出,的圖象,知滿足條件的,故選A.
10.已知偶函數(shù)對(duì)于任意都有,且在區(qū)間上是單調(diào)遞增的,
則,,的大小關(guān)系是( )
A. B.
C. D.
【答案】A
【解析】由,得,∴函數(shù)的周期是2.
∵函數(shù)為偶函數(shù),∴,.
∵在區(qū)間上是單調(diào)遞增的,∴,即.
11.對(duì)任意的實(shí)數(shù)都有,若的圖象關(guān)于對(duì)稱,且,
則( )
A.0 B.2 C.3 D.4
【答案】B
【解析】的圖象關(guān)于對(duì)稱,則函數(shù)的圖象關(guān)于對(duì)稱,
即函數(shù)是偶函數(shù),令,則,
∴,即,則,
即,則函數(shù)的周期是2,又,
則.
12.已知函數(shù),,若存在,則實(shí)數(shù)的取值范圍為( )
A. B.
C. D.
【答案】D
【解析】由題可知,,
若,則,即,即,
解得.所以實(shí)數(shù)的取值范圍為,故選D.
二、填空題
13.設(shè)函數(shù),,則函數(shù)的遞減區(qū)間是_______.
【答案】
【解析】由題意知,函數(shù)的圖象如圖所示的實(shí)線部分,
根據(jù)圖象,
的減區(qū)間是.
14.若函數(shù)是周期為4的奇函數(shù),且在上的解析式為,
則________.
【答案】
【解析】由于函數(shù)是周期為4的奇函數(shù),所以.
15.設(shè)函數(shù),,對(duì)于任意的,不等式恒成立,則實(shí)數(shù)的取
值范圍是________.
【答案】
【解析】如圖作出函數(shù)與的圖象,觀察圖象可知:當(dāng)且僅當(dāng),即時(shí),不等式恒成立,因此的取值范圍是.
16.設(shè)定義在上的函數(shù)同時(shí)滿足以下條件:①;②;③當(dāng)時(shí),,則________.
【答案】
【解析】依題意知:函數(shù)f(x)為奇函數(shù)且周期為2,
∴
.
三、解答題
17.已知函數(shù),其中是大于0的常數(shù).
(1)求函數(shù)的定義域;
(2)當(dāng)時(shí),求函數(shù)在上的最小值;
(3)若對(duì)任意恒有,試確定的取值范圍.
【答案】(1)見(jiàn)解析;(2);(3).
【解析】(1)由,得,
當(dāng)時(shí),恒成立,定義域?yàn)椋?
當(dāng)時(shí),定義域?yàn)椋?
當(dāng)時(shí),定義域?yàn)椋?
(2)設(shè),當(dāng),時(shí),∴.
因此在上是增函數(shù),∴在上是增函數(shù).則.
(3)對(duì)任意,恒有.即對(duì)恒成立.
∴.令,.
由于在上是減函數(shù),∴.
故時(shí),恒有.因此實(shí)數(shù)的取值范圍為.
18.設(shè)是定義域?yàn)榈闹芷诤瘮?shù),最小正周期為2,且,當(dāng)時(shí),.
(1)判定的奇偶性;
(2)試求出函數(shù)在區(qū)間上的表達(dá)式.
【答案】(1)是偶函數(shù);(2).
【解析】(1)∵,∴.
又,∴.又的定義域?yàn)?,∴是偶函?shù).
(2)當(dāng)時(shí),,則;
進(jìn)而當(dāng)時(shí),,.
故.
10
培優(yōu)點(diǎn)七 解三角形
1.解三角形中的要素
例1:的內(nèi)角,,所對(duì)的邊分別為,,,若,,,則_____.
【答案】
【解析】(1)由已知,,求可聯(lián)想到使用正弦定理:,
代入可解得:.由可得:,所以.
2.恒等式背景
例2:已知,,分別為三個(gè)內(nèi)角,,的對(duì)邊,
且有.
(1)求;
(2)若,且的面積為,求,.
【答案】(1);(2)2,2.
【解析】(1)
,
即
∴或(舍),∴;
(2),
,
∴,可解得.
對(duì)點(diǎn)增分集訓(xùn)
一、單選題
1.在中,,,,則( )
A. B. C. D.
【答案】A
【解析】由正弦定理可得,
且,
由余弦定理可得:.故選A.
2.在中,三邊長(zhǎng),,,則等于( )
A.19 B. C.18 D.
【答案】B
【解析】∵三邊長(zhǎng),,,
∴,
.故選B.
3.在中,角,,所對(duì)應(yīng)的邊分別是,,,若,則三角形一定是( )
A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等邊三角形
【答案】C
【解析】∵,由正弦定理,,∴,
∵,,為的內(nèi)角,∴,,,
∴,,整理得,
∴,即.故一定是等腰三角形.故選C.
4.的內(nèi)角,,的對(duì)邊分別為,,,若,,,則的面積為( )
A. B. C. D.
【答案】A
【解析】已知,,,
∴由余弦定理,可得:,
解得:,,∴.故選A.
5.在中,內(nèi)角,,的對(duì)邊分別為,,,若,,則( )
A. B. C. D.
【答案】A
【解析】根據(jù)正弦定理由得:,
所以,即,
則,
又,所以.故選A.
6.設(shè)的三個(gè)內(nèi)角,,所對(duì)的邊分別為,,,如果,且,那么外接圓的半徑為( )
A.1 B. C.2 D.4
【答案】A
【解析】因?yàn)?,所以,化為?
所以,又因?yàn)?,所以?
由正弦定理可得,所以,故選A.
7.在中,角,,所對(duì)的邊分別為,,,且,若,
則的形狀是( )
A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形
【答案】C
【解析】因?yàn)?,所以?
也就是,所以,從而,
故,為等邊三角形.故選C.
8.的內(nèi)角,,的對(duì)邊分別是,,且滿足,則是( )
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形
【答案】B
【解析】利用正弦定理化簡(jiǎn)已知的等式得:
,即,
∵,,為三角形的內(nèi)角,∴,即,
則為直角三角形,故選B.
9.在中,內(nèi)角,,所對(duì)的邊分別為,,,已知的面積為,,,則的值為( )
A.8 B.16 C.32 D.64
【答案】A
【解析】因?yàn)?,所以?
又,∴,解方程組得,,
由余弦定理得,所以.故選A.
10.在中,,,分別為角,,所對(duì)的邊.若,
則( )
A. B. C. D.
【答案】C
【解析】,
∵,可得:,
∴,∴,
∵,∴,∴,
∵,∴.故答案為C.
11.在中,內(nèi)角,,的對(duì)邊分別是,,,若,則是( )
A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形
【答案】D
【解析】∵,由正弦定理得:,,代入,
得,∴進(jìn)而可得,
∴,則是等邊三角形.故選D.
12.在中,角,,所對(duì)的邊分別為,,,已知,,,
則( )
A. B. C.或 D.
【答案】B
【解析】利用正弦定理,同角三角函數(shù)關(guān)系,原式可化為:,
去分母移項(xiàng)得:,
所以,
所以.由同角三角函數(shù)得,
由正弦定理,解得所以或(舍).故選B.
二、填空題
13.在中,角,,的對(duì)邊分別為,,,,,則角的最大值為_(kāi)____;
【答案】
【解析】在中,由角的余弦定理可知
,
又因?yàn)椋裕?dāng)且僅當(dāng),時(shí)等號(hào)成立.
14.已知的三邊,,成等比數(shù)列,,,所對(duì)的角分別為,,,則的取值范圍是_________.
【答案】
【解析】∵的三邊,,成等比數(shù)列,
∴,得,
又∵,∴,,
可得,故答案為.
15.在中三個(gè)內(nèi)角,,,所對(duì)的邊分別是,,,若,且,則面積的最大值是________
【答案】
【解析】∵,
∴,
則,結(jié)合正弦定理得,即,
由余弦定理得,化簡(jiǎn)得,
故,,故答案為.
16.在銳角中,角,,所對(duì)的邊分別為,,,且,,成等差數(shù)列,,
則面積的取值范圍是__________.
【答案】
【解析】∵中,,成等差數(shù)列,∴.
由正弦定理得,∴,,
∴
,
∵為銳角三角形,∴,解得.
∴,∴,
∴,故面積的取值范圍是.
三、解答題
17.己知,,分別為三個(gè)內(nèi)角,,的對(duì)邊,且.
(1)求角的大??;
(2)若,且的面積為,求的值.
【答案】(1);(2).
【解析】(1)由正弦定理得,,
∵,∴,即.
∵∴,∴,∴.
(2)由可得.∴,
∵,∴由余弦定理得:,
∴.
18.如圖,在中,點(diǎn)在邊上,,,.
.
(1)求的面積.
(2)若,求的長(zhǎng).
【答案】(1);(2).
【解析】(1)由題意,
在中,由余弦定理可得
即或(舍),
∴的面積.
(2)在中,由正弦定理得,
代入得,由為銳角,故,
所以,
在中,由正弦定理得,
∴,解得.
9
培優(yōu)點(diǎn)三 含導(dǎo)函數(shù)的抽象函數(shù)的構(gòu)造
1.對(duì)于,可構(gòu)造
例1:函數(shù)的定義域?yàn)椋?,?duì)任意,,則的解集為( )
A. B. C. D.
【答案】B
【解析】構(gòu)造函數(shù),所以,由于對(duì)任意,,
所以恒成立,所以是上的增函數(shù),
又由于,所以,
即的解集為.故選B.
2.對(duì)于,構(gòu)造;對(duì)于,構(gòu)造
例2:已知函數(shù)的圖象關(guān)于軸對(duì)稱,且當(dāng),成立,,,,則,,的大小關(guān)系是( )
A. B. C. D.
【答案】D
【解析】因?yàn)楹瘮?shù)關(guān)于軸對(duì)稱,所以函數(shù)為奇函數(shù).
因?yàn)?,所以?dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),函數(shù)單調(diào)遞減.
因?yàn)椋?,,所以,所以.故選D.
3.對(duì)于,構(gòu)造;對(duì)于或,構(gòu)造
例3:已知為上的可導(dǎo)函數(shù),且,均有,則有( )
A.,
B.,
C.,
D.,
【答案】D
【解析】構(gòu)造函數(shù),則,
因?yàn)榫胁⑶遥?,故函?shù)在上單調(diào)遞減,
所以,,即,,
也就是,.
4.與,構(gòu)造
例4:已知函數(shù)對(duì)任意的滿足,則( )
A. B.
C. D.
【答案】D
【解析】提示:構(gòu)造函數(shù).
對(duì)點(diǎn)增分集訓(xùn)
一、選擇題
1.若函數(shù)在上可導(dǎo)且滿足不等式恒成立,對(duì)任意正數(shù)、,若,
則必有( )
A. B. C. D.
【答案】C
【解析】由已知∴構(gòu)造函數(shù),
則,從而在上為增函數(shù)。
∵,∴,即,故選C.
2.已知函數(shù)滿足,且,則的解集為( )
A. B. C. D.
【答案】D
【解析】構(gòu)造新函數(shù),則,
,對(duì)任意,有,即函數(shù)在上單調(diào)遞減,
所以的解集為,即的解集為,故選D.
3.已知函數(shù)的定義域?yàn)椋瑸榈膶?dǎo)函數(shù),且,則( )
A. B. C. D.
【答案】C
【解析】由題得,設(shè),所以函數(shù)在上單調(diào)遞增,
因?yàn)椋援?dāng)時(shí),;當(dāng)時(shí),.
當(dāng)時(shí),,,所以.
當(dāng)時(shí),,,所以.
當(dāng)時(shí),,所以.
綜上所述,故答案為C.
4.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,,則使得成立的的取值范圍是( )
A. B. C. D.
【答案】B
【解析】設(shè),則,即函數(shù)在上單調(diào)遞減,
因?yàn)?,即?dǎo)函數(shù)關(guān)于直線對(duì)稱,
所以函數(shù)是中心對(duì)稱圖形,且對(duì)稱中心,
由于,即函數(shù)過(guò)點(diǎn),
其關(guān)于點(diǎn)的對(duì)稱點(diǎn)也在函數(shù)上,
所以有,所以,
而不等式,即,即,所以,
故使得不等式成立的的取值范圍是.故選B.
5.已知函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,函數(shù)對(duì)于任意的滿足(其中是函數(shù)的導(dǎo)函數(shù)),則下列不等式成立的是( )
A. B.
C. D.
【答案】C
【解析】由已知,為奇函數(shù),函數(shù)對(duì)于任意的滿足,
得,即,
所以在上單調(diào)遞增;又因?yàn)闉榕己瘮?shù),
所以在上單調(diào)遞減.所以,即.
故選C.
6.定義在上的函數(shù)的導(dǎo)函數(shù)為,若對(duì)任意實(shí)數(shù),有,且為奇函數(shù),則不等式的解集為( )
A. B. C. D.
【答案】B
【解析】構(gòu)造函數(shù),則,所以在上單獨(dú)遞減,
因?yàn)闉槠婧瘮?shù),所以,∴,.
因此不等式等價(jià)于,即,故選B.
7.已知函數(shù)是偶函數(shù),且當(dāng)時(shí)滿足,則( )
A. B.
C. D.
【答案】A
【解析】是偶函數(shù),則的對(duì)稱軸為,
構(gòu)造函數(shù),則關(guān)于對(duì)稱,
當(dāng)時(shí),由,得,
則在上單調(diào)遞增,在上也單調(diào)遞增,
故,∴.本題選擇A選項(xiàng).
8.已知定義域?yàn)榈钠婧瘮?shù)的導(dǎo)函數(shù)為,當(dāng)時(shí),,
若,,,則,,的大小關(guān)系正確的是( )
A. B. C. D.
【答案】C
【解析】定義域?yàn)榈钠婧瘮?shù),
設(shè),∴為上的偶函數(shù),∴,
∵當(dāng)時(shí),,∴當(dāng)時(shí),.
當(dāng)時(shí),,即在單調(diào)遞增,在單調(diào)遞減.
,,,
∵,∴.即,故選C.
9.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,(為自然對(duì)數(shù)的底數(shù)),
且當(dāng)時(shí),,則( )
A. B. C. D.
【答案】C
【解析】令,∴,
∵,∴時(shí),,則,
∴,在上單調(diào)遞減,∴,
即,
∵,∴,
∴,,故選C.
10.定義在上的函數(shù)的導(dǎo)函數(shù)為,若對(duì)任意,都有,則使得成立的的取值范圍為( )
A. B. C. D.
【答案】D
【解析】構(gòu)造函數(shù):,,
∵對(duì)任意,都有,
∴,
∴函數(shù)在單調(diào)遞減,由化為:,
∴.∴使得成立的的取值范圍為.故選D.
11.已知函數(shù)是定義在區(qū)間上的可導(dǎo)函數(shù),滿足且(為函數(shù)的導(dǎo)函數(shù)),若且,則下列不等式一定成立的是( )
A. B.
C. D.
【答案】C
【解析】構(gòu)造函數(shù),,所以是上的減函數(shù).
令,則,由已知,可得,下面證明,即證明,
令,則,即在上遞減,,即,
所以,若,,則.故選C.
12.定義在上的奇函數(shù)滿足,且當(dāng)時(shí),不等式恒成立,則函數(shù)的零點(diǎn)的個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
【答案】C
【解析】定義在上的奇函數(shù)滿足:
,且,
又時(shí),,即,
∴,函數(shù)在時(shí)是增函數(shù),
又,∴是偶函數(shù);
∴時(shí),是減函數(shù),結(jié)合函數(shù)的定義域?yàn)?,且?
可得函數(shù)與的大致圖象如圖所示,
∴由圖象知,函數(shù)的零點(diǎn)的個(gè)數(shù)為3個(gè).故選C.
二、填空題
13.設(shè)是上的可導(dǎo)函數(shù),且,,.則的值為_(kāi)_______.
【答案】
【解析】由得,所以,即,
設(shè)函數(shù),則此時(shí)有,故,.
14.已知,為奇函數(shù),,則不等式的解集為_(kāi)________.
【答案】
【解析】∵為奇函數(shù),∴,即,
令,,則,
故在遞增,,得,
故,故不等式的解集是,故答案為.
15.已知定義在實(shí)數(shù)集的函數(shù)滿足,且導(dǎo)函數(shù),則不等式的解集為_(kāi)_________.
【答案】
【解析】設(shè),則不等式等價(jià)為,
設(shè),則,
∵的導(dǎo)函數(shù),∴,函數(shù)單調(diào)遞減,
∵,∴,則此時(shí),解得,
即的解為,所以,解得,
即不等式的解集為,故答案為.
16.已知函數(shù)是定義在上的奇函數(shù),且.若時(shí),,
則不等式的解集為_(kāi)_________.
【答案】
【解析】設(shè),則,當(dāng)時(shí),由已知得,為增函數(shù),
由為奇函數(shù)得,即,
∴當(dāng)時(shí),,
當(dāng)時(shí),,,又是奇函數(shù),
∴當(dāng)時(shí),,時(shí),.
∴不等式的解集為.故答案為.
10
培優(yōu)點(diǎn)九 線性規(guī)劃
1.簡(jiǎn)單的線性規(guī)劃問(wèn)題應(yīng)注意取點(diǎn)是否取得到
例1:已知實(shí)數(shù),滿足,則的最小值是( )
A.4 B.5 C.6 D.7
【答案】C
【解析】不等式組對(duì)應(yīng)的可行域如圖所示:
由當(dāng)動(dòng)直線過(guò)時(shí),取最小值為6,故選C.
2.目標(biāo)函數(shù)為二次式
例2:若變量,滿足,則的最大值為( )
A. B. C. D.
【答案】D
【解析】目標(biāo)函數(shù)可視為點(diǎn)到原點(diǎn)距離的平方,
所以只需求出可行域里距離原點(diǎn)最遠(yuǎn)的點(diǎn)即可,作出可行域,
觀察可得最遠(yuǎn)的點(diǎn)為,所以.
3.目標(biāo)函數(shù)為分式
例3:設(shè)變量,滿足約束條件,則的取值范圍是( )
A. B. C. D.
【答案】D
【解析】所求可視為點(diǎn)與定點(diǎn)連線的斜率.
從而在可行域中尋找斜率的取值范圍即可,
可得在處的斜率最小,即,
在處的斜率最大,為,
結(jié)合圖像可得的范圍為.故選D.
4.面積問(wèn)題
例4:若不等式組所表示的平面區(qū)域被直線分成面積相等的兩部分,則的值為( )
A. B. C. D.
【答案】C
【解析】在坐標(biāo)系中作出可行域,
如圖所示為一個(gè)三角形,動(dòng)直線為繞定點(diǎn)的一條動(dòng)直線,
設(shè)直線交于,若將三角形分為面積相等的兩部分,則,
觀察可得兩個(gè)三角形高相等,所以,即為中點(diǎn),
聯(lián)立直線方程可求得,,則,代入直線方程可解得.
對(duì)點(diǎn)增分集訓(xùn)
一、單選題
1.若實(shí)數(shù),滿足,則的最大值為( )
A. B.1 C.0 D.
【答案】B
【解析】由圖可知,可行域?yàn)榉忾]的三角區(qū)域,
由在軸上的截距越小,目標(biāo)函數(shù)值越大,
所以最優(yōu)解為,所以的最大值為1,故選B.
2.已知實(shí)數(shù),滿足線性約束條件,則其表示的平面區(qū)域的面積為( )
A. B. C. D.
【答案】B
【解析】滿足約束條件,如圖所示:
可知范圍擴(kuò)大,實(shí)際只有,
其平面區(qū)域表示陰影部分一個(gè)三角形,其面積為.故選B.
3.已知實(shí)數(shù),滿足,若只在點(diǎn)處取得最大值,則的取值范圍是( )
A. B. C. D.
【答案】C
【解析】由不等式組作可行域如圖,
聯(lián)立,解得,當(dāng)時(shí),目標(biāo)函數(shù)化為,
由圖可知,可行解使取得最大值,符合題意;
當(dāng)時(shí),由,得,此直線斜率大于0,
當(dāng)在軸上截距最大時(shí)最大,
可行解為使目標(biāo)函數(shù)的最優(yōu)解,符合題意;
當(dāng)時(shí),由,得,此直線斜率為負(fù)值,
要使可行解為使目標(biāo)函數(shù)取得最大值的唯一的最優(yōu)解,
則,即.
綜上,實(shí)數(shù)的取值范圍是.故選C.
4.已知實(shí)數(shù),滿足約束條件,則的取值范圍為( )
A. B.
C. D.
【答案】C
【解析】畫出不等式表示的可行域,如圖陰影三角形所示,
由題意得,.
由得,
所以可看作點(diǎn)和連線的斜率,記為,
由圖形可得,
又,,所以,
因此或,所以的取值范圍為.故選C.
5.若實(shí)數(shù),滿足約束條件,則的最大值是( )
A. B. C. D.
【答案】D
【解析】由實(shí)數(shù),滿足約束條件作出可行域,如圖:
∵,,∴,
聯(lián)立,解得,
的幾何意義為可行域內(nèi)動(dòng)點(diǎn)與原點(diǎn)距離的平方,其最大值.
故選D.
6.已知點(diǎn),若動(dòng)點(diǎn)的坐標(biāo)滿足,則的最小值為( )
A. B. C. D.
【答案】C
【解析】作出可行域如圖:
觀察圖象可知,最小距離為點(diǎn)到直線的距離,
即,故選C.
7.,滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為( )
A.或 B.2或 C.2或1 D.2或
【答案】D
【解析】由題意作出約束條件,平面區(qū)域,
將化為,相當(dāng)于直線的縱截距,
由題意可得,與或與平行,
故或;故選D.
8.若,滿足不等式組,則成立的概率為( )
A. B. C. D.
【答案】A
【解析】作出不等式組表示的平面區(qū)域,如圖所示:
因?yàn)楸硎军c(diǎn)與定點(diǎn)連線的斜率,
所以成立的點(diǎn)只能在圖中的內(nèi)部(含邊界),
所以由幾何概型得:成立的概率為,
由,得,由,得,
由,得,由,解得,
由,解得,所以,,
所以成立的概率為,故選A.
9.若,滿足不等式組,則的最小值為( )
A.7 B.6 C. D.4
【答案】C
【解析】畫出可行城如圖所示,
目標(biāo)函數(shù)可化為,共圖象是對(duì)稱軸為的兩條射線,
由得取得最小值時(shí)的最優(yōu)解為.
即.故選C.
10.已知平面直角坐標(biāo)系上的區(qū)域由不等式組給定.若為上動(dòng)點(diǎn),點(diǎn)的坐標(biāo)為.則的最大值為( )
A. B. C.4 D.3
【答案】C
【解析】如圖所示:,即,
首先做出直線:,將平行移動(dòng),
當(dāng)經(jīng)過(guò)點(diǎn)時(shí)在軸上的截距最大,從而最大.
因?yàn)?,故的最大值?.故選C.
11.若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】作出不等式,可行域如圖:
∵平面區(qū)域內(nèi)存在點(diǎn),滿足,
∴直線與可行域有交點(diǎn),解方程組得.
∴點(diǎn)在直線下方.可得.解得.故選B.
12.已知圓,平面區(qū)域,若圓心,且圓與軸相切,
則圓心與點(diǎn)連線斜率的取值范圍是( )
A. B.
C. D.
【答案】A
【解析】畫出可行域如圖,
由圓的標(biāo)準(zhǔn)方程可得圓心,半徑為1,
因?yàn)閳A與軸相切,所以,
直線分別與直線與交于點(diǎn),,
所以,圓心與點(diǎn)連線斜率為,
當(dāng)時(shí),;當(dāng)時(shí);
所以圓心與點(diǎn)連線斜率的取值范圍是,故選A.
二、填空題
13.設(shè),滿足,則的最大值為_(kāi)___________.
【答案】13
【解析】如圖,作出可行域(圖中陰影部分),
目標(biāo)函數(shù)在點(diǎn)取得最大值13.故答案為13.
14.若變量,滿足約束條件,則的最小值為_(kāi)________.
【答案】1
【解析】作可行域,,表示可行域內(nèi)點(diǎn)到坐標(biāo)原點(diǎn)距離的平方,
由圖可得最小值為.
15.已知實(shí)數(shù),滿足,則的最小值為_(kāi)_____.
【答案】4
【解析】由實(shí)數(shù),滿足,作出可行域如圖,
聯(lián)立,解得,,
其幾何意義為可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)連線的斜率加2.
∵,∴的最小值為4.故答案為4.
16.某公司計(jì)劃明年用不超過(guò)6千萬(wàn)元的資金投資于本地養(yǎng)魚場(chǎng)和遠(yuǎn)洋捕撈隊(duì).經(jīng)過(guò)對(duì)本地養(yǎng)魚場(chǎng)年利潤(rùn)率的調(diào)研,其結(jié)果是:年利潤(rùn)虧損的概率為,年利潤(rùn)獲利的概率為,年利潤(rùn)獲利的概率為,對(duì)遠(yuǎn)洋捕撈隊(duì)的調(diào)研結(jié)果是:年利潤(rùn)獲利為的概率為,持平的概率為,年利潤(rùn)虧損的可能性為.為確保本地的鮮魚供應(yīng),市政府要求該公司對(duì)遠(yuǎn)洋捕撈隊(duì)的投資不得高于本地養(yǎng)魚場(chǎng)的投資的2倍.根據(jù)調(diào)研數(shù)據(jù),該公司如何分配投資金額,明年兩個(gè)項(xiàng)目的利潤(rùn)之和最大值為_(kāi)________千萬(wàn).
【答案】
【解析】設(shè)本地養(yǎng)魚場(chǎng)平均年利潤(rùn),遠(yuǎn)洋捕撈隊(duì)平均平均年利潤(rùn);
,;
設(shè)本地養(yǎng)魚場(chǎng)投千萬(wàn)元,遠(yuǎn)洋捕撈隊(duì)投千萬(wàn)元,
則利潤(rùn)之和,,
如圖,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí)利潤(rùn)最大,千萬(wàn)元.
16
收藏
編號(hào):4044083
類型:共享資源
大?。?span id="0nh7znx" class="font-tahoma">8.07MB
格式:ZIP
上傳時(shí)間:2019-12-30
30
積分
- 關(guān) 鍵 詞:
-
2019
高考
數(shù)學(xué)
精準(zhǔn)
培優(yōu)專練
打包
20
- 資源描述:
-
2019屆高考數(shù)學(xué)全冊(cè)精準(zhǔn)培優(yōu)專練(打包20套)理.zip,2019,高考,數(shù)學(xué),精準(zhǔn),培優(yōu)專練,打包,20
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。