插座零件塑料注塑模具設(shè)計(jì)
插座零件塑料注塑模具設(shè)計(jì),插座,零件,塑料,注塑,模具設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
題目:插座零件塑料注塑模具設(shè)計(jì)
系 別 機(jī)電信息系
專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班 級(jí)
姓 名
學(xué) 號(hào)
導(dǎo) 師
2012年 12 月 26 日
1、 畢業(yè)設(shè)計(jì)(論文)綜述(題目背景、研究意義及國(guó)內(nèi)外相關(guān)研究情況)
1.1塑料注射模具的背景
塑料注射模具是成型塑料制件的一種重要工藝裝備,在塑料制品的生產(chǎn)中起著關(guān)鍵的作用。塑料模具工業(yè)從起步到現(xiàn)在,歷經(jīng)半個(gè)世紀(jì),有了很大發(fā)展,模具水平有了較大提高。成型工藝方面,多材質(zhì)塑料成型模、高效多色注射模、鑲件互換結(jié)構(gòu)和抽芯脫模機(jī)構(gòu)的創(chuàng)新設(shè)計(jì)方面也取得較大進(jìn)展。氣體輔助注射成型技術(shù)的使用更趨成熟,如青島海信模具有限公司、天津通信廣播公司模具廠家在29—34英寸電視機(jī)外殼以及一些厚壁零件的模具上運(yùn)用氣輔技術(shù),一些廠家還使用了C-MOLD氣輔軟件,取得較好的效果。如上海新普雷斯等公司就能為用戶提供氣輔成型設(shè)備及技術(shù)。
整體來(lái)看,中國(guó)塑料模具無(wú)論是在數(shù)量上,還是在質(zhì)量上、技術(shù)和能力等方面都有了很大的進(jìn)步,但是與國(guó)民經(jīng)濟(jì)發(fā)展的需求、世界先進(jìn)水平相比,差距仍很大。一些大型、復(fù)雜、長(zhǎng)壽命的中高檔塑料模具每年仍需大量進(jìn)口。在總量供不應(yīng)求的同時(shí),一些低檔塑料模具確供過(guò)于求,市場(chǎng)競(jìng)爭(zhēng)激烈,還有一些技術(shù)含量不太高的中高檔塑料模具也有供過(guò)于求的趨勢(shì)。
1.2塑料注射模具的國(guó)際意思
加入WTO,給塑料模具產(chǎn)業(yè)帶來(lái)了巨大的挑戰(zhàn),同時(shí)帶來(lái)更多的機(jī)會(huì),由于中國(guó)塑料模具以中低檔產(chǎn)品為主,產(chǎn)品價(jià)格優(yōu)勢(shì)明顯,有些甚至只有國(guó)外價(jià)格的1∕5——1∕3。加入WTO后,國(guó)外同類產(chǎn)品對(duì)國(guó)內(nèi)沖擊不大,而中國(guó)中低檔模具的出口量則加大;在高精模具方面,加入WTO前本來(lái)就主要依靠進(jìn)口,加入WTO后,不僅為高精尖產(chǎn)品的進(jìn)口帶來(lái)了更多的便利,同時(shí)還促使更多外資來(lái)中國(guó)建廠,帶來(lái)國(guó)外先進(jìn)的模具技術(shù)和管理經(jīng)驗(yàn),對(duì)培養(yǎng)中國(guó)的專業(yè)模具人才起到了推動(dòng)作。
雖然 近幾年模具出口增幅大于進(jìn)口增幅,但所增加絕對(duì)量仍是進(jìn)口大于出口,至使模具外貿(mào)逆差逐年增大。這一狀況在2006年已得到改善,逆差略有減少。模具外貿(mào)逆差增大主要有兩方面原因:一是國(guó)民經(jīng)濟(jì)持續(xù)高速發(fā)展,特別是汽車產(chǎn)業(yè)的高速發(fā)展帶來(lái)了對(duì)模具的旺盛需求,有些高檔模具國(guó)內(nèi)實(shí)在生產(chǎn)不了,只好進(jìn)口;但確實(shí)也有一些模具國(guó)內(nèi)可以生產(chǎn),也可以進(jìn)口。這與中國(guó)現(xiàn)行的關(guān)稅政策及項(xiàng)目審批制度有關(guān)。二是對(duì)模具出口鼓勵(lì)不夠。現(xiàn)在模具與其它機(jī)電產(chǎn)品一樣,出口退稅率只有13%,而未達(dá)17%。
1.3塑料注射模具的國(guó)內(nèi)情況
從市場(chǎng)情況來(lái)看,塑料模具生產(chǎn)企業(yè)應(yīng)重點(diǎn)發(fā)展那些技術(shù)含量高的大型、精密、復(fù)雜、壽命高的模具,并大力開(kāi)發(fā)國(guó)際市場(chǎng),發(fā)展出口模具。隨著中國(guó)塑料工業(yè),特別是工程塑料的高速發(fā)展,可以預(yù)見(jiàn),中國(guó)塑料模具的發(fā)展速度仍將繼續(xù)高于模具工業(yè)的整體發(fā)展速度,未來(lái)幾年年增長(zhǎng)率仍將保持20%左右的水平。
近年來(lái),港資、臺(tái)資、外資在中國(guó)大陸發(fā)展迅速,這些企業(yè)中大量自產(chǎn)自用塑料模具無(wú)確切的統(tǒng)計(jì)資料,因此未能進(jìn)入上述統(tǒng)計(jì)之中。
1.4塑料注射模具的研究意義
在科技發(fā)展中,人是第一要素,因此我們特別注意人才的培養(yǎng),實(shí)現(xiàn)產(chǎn)、學(xué)、研相結(jié)合,培養(yǎng)更多的模具人才,搞好技術(shù)創(chuàng)新,,提高模具設(shè)計(jì)制造水平。在制造中積極采用多媒體與虛擬現(xiàn)實(shí)技術(shù),逐步走向網(wǎng)絡(luò)化、智能化環(huán)境,實(shí)現(xiàn)模具企業(yè)的敏捷制造、動(dòng)態(tài)聯(lián)盟與系統(tǒng)集成。我國(guó)模具工業(yè)一個(gè)完全信息化的、充滿著朝氣和希望而又實(shí)實(shí)在在的新時(shí)代即將到來(lái)。
2、本課題研究的主要內(nèi)容和擬采用的研究方案、研究方法或措施
本次設(shè)計(jì)的零件如下圖2.1所示:
2.1 零件圖
2.1研究?jī)?nèi)容:塑件基本尺寸的計(jì)算和注射機(jī)的選用、模具類型及結(jié)構(gòu)的確定、模具結(jié)構(gòu)草圖的繪制、模具與成型機(jī)械關(guān)系的校核、模具零件的必要計(jì)算、繪制模具裝配圖、繪制模具零件工作圖;分型面的選擇,導(dǎo)向機(jī)構(gòu)的設(shè)計(jì),推出機(jī)構(gòu)的設(shè)計(jì)等。設(shè)計(jì)方案的擬定主要包括:(1)確定成型方法;(2)確定模具類型及型腔數(shù);(3)型腔數(shù);(3)型腔的布置;(4)選擇注射機(jī)的規(guī)格;(5)確定分型面;(6)確定澆注系統(tǒng)和排氣系統(tǒng);(7)選擇頂出方式及抽芯機(jī)構(gòu);(8)確定拉料桿的形式;(9)確定加熱與冷卻系統(tǒng);(10)確定成型零件和結(jié)構(gòu)零件形式等。
設(shè)計(jì)計(jì)算。包括:成型零件的工作尺寸及公查;成型型腔的壁厚;型芯墊板厚度。模具典型零件的選材及熱處理工藝路線分析。
對(duì)設(shè)計(jì)方案和設(shè)計(jì)結(jié)果進(jìn)行三維剖析,作出模具開(kāi)合結(jié)構(gòu)圖。
其中澆注口是澆注系統(tǒng)中塑料進(jìn)入型腔前的關(guān)鍵部分。澆口按形式和大小分:①直接澆口;②側(cè)澆口;③點(diǎn)澆口;④護(hù)耳式澆口;每一種都有起各自的優(yōu)缺點(diǎn)。本次設(shè)計(jì)給定的塑件為薄壁零件,選擇點(diǎn)澆口,其優(yōu)點(diǎn)是去除澆口后,制品上留下的痕跡不明顯,開(kāi)模后可自動(dòng)拉斷,成型時(shí)可減少熔接痕,能夠保證表面光滑,精度也有一定的保證。
2.2研究方案、研究方法或措施:
(1) 經(jīng)過(guò)測(cè)量和計(jì)算,用Pro/E軟件畫(huà)出塑件的三維圖,如下圖2.2(a),(b)
(a) (b)
2.2圖件三維圖
(2) 用Pro/E軟件設(shè)計(jì)出插座的注塑模,再利用Pro/E或AUTOCAD軟件模架構(gòu)建,結(jié)合設(shè)計(jì)、計(jì)算的注塑模的主要尺寸,調(diào)用標(biāo)準(zhǔn)模架,完成插座整套模具的設(shè)計(jì)。
(3) 用Pro/E等設(shè)計(jì)軟件,結(jié)合文字說(shuō)明、圖片等方法詳細(xì)說(shuō)明插座注塑模具的設(shè)計(jì)過(guò)程。
(4)總結(jié)以上成果,寫(xiě)出整個(gè)畢業(yè)設(shè)計(jì)的說(shuō)明書(shū)。
3、本課題研究的重點(diǎn)及難點(diǎn),前期已開(kāi)展工作
(1) 選擇注塑機(jī)的類型。
(2)型腔布置,根據(jù)塑件的幾何結(jié)構(gòu)特點(diǎn)、尺寸精度要求、批量大小、模具制造難以、模具成本等確定型腔數(shù)量和排列方式。
(2)確定分型面。分型面的位置要有利于模具加工、排氣、脫模及成型操作,塑料制件的表面質(zhì)量等。
(3)確定澆注系統(tǒng)(主澆道、分澆道及澆口的形狀、位置、大?。┖团艢庀到y(tǒng)(排氣的方法、排氣槽位置、大?。?
(4)選擇頂出方式(頂干、頂管、推板、組合式頂出),決定側(cè)凹處理方法、抽芯方式。
(5)確定冷卻、加熱方式及加熱冷卻溝槽的形狀、位置、加熱元件的安裝部位。
(5)根據(jù)模具材料、強(qiáng)度計(jì)算或者經(jīng)驗(yàn)數(shù)據(jù),確定模具零件厚度及其外形尺寸,外形結(jié)構(gòu)及所有連接、定位、導(dǎo)向件位置。
(6)確定主要成型零件,結(jié)構(gòu)件的結(jié)構(gòu)方式。
(7)考慮模具各部分的強(qiáng)度,計(jì)算成型零件工作尺寸。
4、完成本課題的工作方案及進(jìn)度計(jì)劃(按周次填寫(xiě))
對(duì)塑件進(jìn)行工藝分析,完成有關(guān)零件圖,初步擬定設(shè)計(jì)方案,對(duì)設(shè)計(jì)方案行
確定,并進(jìn)行經(jīng)濟(jì)分析和環(huán)保分析。最終對(duì)模具結(jié)構(gòu)進(jìn)行三維剖析,用Pro/E進(jìn)行虛擬裝配,完成模具的開(kāi)合結(jié)構(gòu)圖。
進(jìn)度計(jì)劃:
1)1-4周,下達(dá)任務(wù)書(shū),收集資料,撰寫(xiě)開(kāi)題報(bào)告;
2)5-6周,對(duì)給定的塑料進(jìn)行測(cè)繪,繪出零件圖;
3)7-8周,完成方案設(shè)計(jì)、裝配圖設(shè)計(jì),完成外文翻譯、撰寫(xiě)中期報(bào)告,準(zhǔn)
備中期答辯;
4)9-13周,完成全部零件設(shè)計(jì),并對(duì)模具進(jìn)行三維解剖,制作出模具開(kāi)合結(jié)
構(gòu)圖;
5)14周,撰寫(xiě)畢業(yè)設(shè)計(jì)論文;
6)15周,整理資料,準(zhǔn)備答辯。
5 指導(dǎo)教師意見(jiàn)(對(duì)課題的深度、廣度及工作量的意見(jiàn))
指導(dǎo)教師: 年 月 日
6 所在系審查意見(jiàn):
系主管領(lǐng)導(dǎo): 年 月 日
參考文獻(xiàn)
[1] 曹宏深,趙仲治主編.塑料成型工藝與模具設(shè)計(jì).北京:機(jī)械工業(yè)出版社,1993.
[2] 馬金俊編著.塑料模具設(shè)計(jì).中國(guó)科學(xué)技術(shù)出版(第2版),1994.
[3] 張克惠編著.注塑模設(shè)計(jì).西安:西北工業(yè)大學(xué)出版社,1995.
[4] 丁浩主編.塑料工業(yè)實(shí)用手冊(cè).北京:化學(xué)工業(yè)出版社,1995.
[5] 模具實(shí)用技術(shù)叢書(shū)編委會(huì)編.塑料模具設(shè)計(jì)與應(yīng)用實(shí)例(第2版).北京:機(jī)械工業(yè)出版社,2009 11.
[6] 付宏生主編.塑料制品與塑料模具設(shè)計(jì).北京:化學(xué)工業(yè)出版社,2007.
[7] 付宏生主編.塑料成型模具.北京:化學(xué)工業(yè)出版社,2006.
[8] 葉久新 王群主編.塑料成型工藝及模具設(shè)計(jì).北京:機(jī)械工業(yè)出版社,2007.
[9] 濮良貴,紀(jì)名剛主編.機(jī)械設(shè)計(jì)7版. 北京:高等教育出版社,2001.
[10] 成大先.機(jī)械設(shè)計(jì)手冊(cè).4版.北京:化學(xué)工業(yè)出版社,2002.
[11] 鄒慧君主編.機(jī)構(gòu)系統(tǒng)設(shè)計(jì).上海:上??茖W(xué)技術(shù)出版社,1996.
[12] 藤森洋三.機(jī)構(gòu)設(shè)計(jì)實(shí)用構(gòu)思圖冊(cè).賀相,譯.北京:機(jī)械工業(yè)出版社,1990.
[13] 劉鴻文主編.材料力學(xué)1.北京:高等教育出版社.
[14] 大連理工大學(xué)工程圖學(xué)教研室 編.機(jī)械制圖(第6版).北京:高等教育社,2007,7.
[15] 劉朝儒,等.機(jī)械制圖.北京:高等教育出版社,2001.
[16] stic Composite Prototypes: A Materials Alternative for Recycling Plastic and Glass Waste. Volume 5, Number 3 ,159-169
[17] M. Heckele,W.BACHER,K.D. Müller, Springer Berlin / Heidelberg.Hot embossing-Thee molding technique for plastic microstructures. Volume 4, Number 3 ,122-124
[18 ] Coulter S. L.Bras B.A. Rosen D. W. Formulating and solving parametric design problems involving non-interference con straints.Engineering with Computers, Springer-Verlag New York Inc. 1997, 13 (2):112-124
temperature Pujos Cedex great molding numer cooling is to effect and quality fastest lar industrie increase well known economically mer melt sufficiently so that the part can be ejected without any significant deformation 2 An efficient cooling system design of the cooling channels aiming at reducing cycle time must minimize such undesired defects as sink marks differential shrinkage ther mal residual stress built up and part warpage During the post fill ing and cooling stages of injection molding hot molten polymer touches the cold mold wall and a solid layer forms on the wall tion to the coolant moving through the cooling channels and by natural convection to the air around the exterior mold surface The coolant is flowing through the channels at a given flow rate and a given temperature which is considered constant throughout the length of the channel In this work time dependent two dimensional model is considered which consists of an entire computational domain of the cavity mold and cooling channel surfaces The cyclic transient temperature distribution of the mold and polymer T shape can be obtained by solving the transient energy equation Corresponding author Tel 330540006348 fax 330540002731 Applied Thermal Engineering 29 2009 1786 1791 Contents lists available E mail address hassan enscpb fr H Hassan cess where polymer is injected into a mould cavity and solidifies to form a plastic part There are three significant stages in each cy cle The first stage is filling the cavity with melt hot polymer at an injection temperature filling and post filling stage It is followed by taking away the heat of the polymer to the cooling channels cooling stage finally the solidified part is ejected ejection stage The cooling stage is of the greatest importance because it signifi cantly affects the productivity and the quality of the final product It is well known that more than seventy percent of the cycle time in the injection molding process is spent in cooling the hot poly distribution of the mold and polymer therefore their effect on the solidification degree of that polymer A fully transient mold cooling analysis is performed using the finite volume method for a T shape plastic mold with similar dimensions to 5 as shown in Fig 1 Different cooling channels positions and forms are studied 2 Mathematical model The heat of the molten polymer is taken away by forced convec 1 Introduction Plastic industry is one of the world s ranked as one of the few billion dol injection molded parts continues to plastic injection molding process is cient manufacturing techniques for precision plastic parts with various shapes at low cost 1 The plastic injection molding 1359 4311 see front matter C211 2008 Elsevier Ltd All doi 10 1016 j applthermaleng 2008 08 011 growing industries s Demand for every year because as the most effi producing of and complex geometry process is a cyclic pro As the material cools down the solid skin begins to grow with increasing time as the cooling continues until the entire material solidifies Over the years many studies on the problem of the opti mization of the cooling system layout in injection molding and phase change of molding process have been made by various researchers and ones which focused intensity on these topics and will used in our system design and validations are 3 6 The main purpose of this paper is to study the effect of the cooling channels position and its cross section shape on the temperature Cooling system leads to minimum cooling time is not achieving uniform cooling throughout the mould C211 2008 Elsevier Ltd All rights reserved Effect of cooling system on the polymer during injection molding Hamdy Hassan Nicolas Regnier Cedric Lebot Cyril Laboratoire TREFLE Bordeaux1 UMR 8508 Site ENSCPB 16 Av Pey Berland 33607 Pessac article info Article history Received 15 November 2007 Accepted 19 August 2008 Available online 30 August 2008 Keywords Polymer Solidification Injection molding abstract Cooling system design is of is crucial not only to reduce ity of the final product A performed A cyclic transient of the mold cooling study cooling system design The ture distribution of the mold tivity of the process the cooling should be necessary for the Applied Thermal journal homepage www elsevi rights reserved Guy Defaye France importance for plastic products industry by injection molding because it cycle time but also it significantly affects the productivity and qual ical modeling for a T mold plastic part having four cooling channels is analysis using a finite volume approach is carried out The objective determine the temperature profile along the cavity wall to improve the of cooling channels form and the effect their location on the tempera the solidification degree of polymer are studied To improve the produc time should be minimized and at the same time a homogeneous cooling of the product The results indicate that the cooling system which and solidification at ScienceDirect Engineering dissipation of the heat through phase change process This tech plicit implicit technique already validated in previous studies by Vincent 8 and Le Bot 9 that is based on the technique New Source of Voller 10 This method proposes to maintain the nodes where phase change occurs to the melting temperature This solu tion is repeated until the convergence of the temperature with the source term equals to the latent heat The source term is discret ized by S c qL f of s ot qL f f n 1 s C0f n s Dt 5 The solid fraction which is function of the temperature is line arized as Nomenclature C P J kg K specific heat at constant pressure f s solid fraction h W m 2 K heat transfer coefficient K number of the internal iterations L latent heat of fusion J kg n number of the external iterations N normal direction S c source term T K temperature t s time H Hassan et al Applied Thermal Engineering nique is applied on fixed nodes and the energy equation in this case is represented as follow qC P oT ot r krT S c 2 And the source term S c is represented by S c qL f of s ot 3 where f s T 0 0 at TC31T f full liquid region 0C30 f s C301 at T T f iso thermal phase change region and f s T 1 at TC30T f full solid region On the whole domain the following boundary conditions are applied C0k oT oN h c T C0T c 2C 1 and C0k oT oN h a T C0T a 2C 2 4 3 Numerical solution The numerical solution of the mathematical model governing the behavior of the physical system is computed by finite volume method The equations are solved by an implicit treatment for qC P oT ot r krT 1 In order to take into account the solidification a source term is added to the energy equation corresponding to heat absorption or heat release 7 which takes in consideration the absorption or the the different terms of the equations system When we take in con sideration the solidification effect the energy equation is solved with a fixed point algorithm for the solid fraction For each itera tion of that fixed point we use discretization with time hybrid ex 0 2 0 4 0 2 0 004 0 03 0 004 P2 P3 P4 P1 P6 P7 P5 Exterior air free convection h a Cooling channels forced convection h f Fig 1 MoldstructurewithaT shapeproductandfourcoolingchannels Dim Inm Greek symbols k W m K thermal conductivity q kg m 3 density C 1 interior surface of the cooling channels C 2 exterior surface of the mold Subscripts a ambient air c cooling fluid f phase change 0 01 0 01 0 01 0 01 0 01 0 02 A1 A2 A3 A4 A5 A7 B1 B2 B3 B4 B5 B7 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5 0 04 0 02 0 01 0 015 Polymer Fig 2 Different cooling channels positions Dim In m 29 2009 1786 1791 1787 f n k 1 K s f n k K s dF s dT C18C19 n k K T n k 1 K C0T n k K 6 Then we force the temperature to tend to the melting temper ature where the source term is not null by updating the source term S k 1 c S k c qC p T C0T f Dt 7 The energy equation is discretized as follow qC P Dt C0 qL f Dt dF dT C18C19 n k K T n k 1 K C0r krT n k 1 K qL f Dt f n k 1 K s C0f n s C0 qL f Dt dF dT C18C19 n k K T f qC P Dt T n 8 With dF dT C01 if 0 C30 f n k K s C30 1 and dF dT 0iff n k K s 0or1 9 This process allows differentiating the temperature field and so lid fraction calculated at the same instant and the linear system is solved by central discretization method 11 For each internal iter ation the resolution of that equation provides f n k 1 K s and T n k 1 K The convergence is achieved when the criteria of the solid fraction and temperature are verified by f n k 1 K s C0f n k K s C13 C13 C13 C13 C13 C13C302 f and T n k 1 K C0T n k K C13 C13 C13 C13 C13 C13C302 T 10 Further details on the numerical model and its validation are presented in 9 the horizontal direction between positions B2 and B5 or positions A2 and A5 which have the maximum solidification percent When we compare the solidification percent for different locations of the upper positions C and D we find that as the channel approaches to the product in the horizontal direction the solidification percent increases and the cooling rate increase rapidly compared with the effect of lower position We notice that the effect of the cooling channel position on the temperature distribution and solidification decreases as the cooling time augments to higher value and its ef 1788 H Hassan et al Applied Thermal Engineering 4 Results and discussion A full two dimensional time dependent mold cooling analysis in injection molding is carried out for a plate mould model with T shape plastic mold and four cooling channels as indicated in Fig 1 Due to the symmetry half of the mold is modeled and ana lyzed All the cooling channels have the same size and they have diameter of 10 mm each in case of circular channels The cooling operating parameters and the material properties are listed in Ta bles 1 and 2 respectively and they are considered constant during all numerical results 5 7 Each numerical cycle consists of two stages cooling stage where the cavity is filled with hot polymer initially at polymer injected temperature the ejection stage where the cavity is filled with air initially at ambient temperature Figs 3 and 4 show the cyclic transient variations of the mould tempera ture with time for 16 s mold cooling time at locations P1 P2 P3 P4 beside the mould walls and P5 to P7 inside the mould walls respectively Fig 1 and that in case of applied the solidifica tion and without applied solidification They are simulated for the first 30 cycles in case of circular cooling channels position A5 D3 as shown in Fig 2 We find that the simulated results are in good agreement with the transient characteristic of the cyclic mold tem perature variations described in 5 It is found that there is a slightly difference in temperatures values between the two results thus due to the difference in numerical method used and the accu racy in the numerical calculations The figures show that the rela tively temperature fluctuation is largest near the cavity surface and diminishes away from the cavity surface We find that the maxi mum amplitude of temperature fluctuation during the steady cycle can reach 10 C176C without applying solidification and 15 C176C in case of applying the solidification 4 1 Effect of cooling channels form An efficient cooling system design providing uniform tempera ture distribution throughout the entire part during the cooling pro cess should ensure product quality by preventing differential shrinkage internal stresses and mould release problems It also should reduce time of cooling and accelerate the solidification pro cess of the product to augment the productivity of the molding Table 1 Cooling operating parameters Cooling operating parameter Cooling operating parameter Coolant fluid temperature 30 C176C Ambient air temperature 30 C176C Polymer injected temperature 220 C176C Heat transfer coefficient of ambient air 77 W m 2 K Temperature of fusion of polymer 110 C176C Heat transfer coefficient inside cooling channel 3650 W m 2 K Latent heat 115 kJ Mold opening time 4 s kg process To demonstrate the influence of the cooling channels form on the temperature distribution throughout the mould and solidi fication process of the product we proposed three different cross sectional forms of the cooling channels circular square rectangu lar1 with long to width ratio of 0 5 and rectangular 2 with width to long ratio of 0 25 Two cases are studied first case all the cooling channels have the same cross sectional area and the second case they have the same perimeter The comparison is carried out for the same cooling channels position A5 D3 Fig 5 shows the solidification percent calculated numerically as the summation of the solid fraction of each element multiplied by the area of that element to total area of the product for differ ent forms with different cooling time The figure indicates that the effect of cooling channels form on the cooling rate decreases with increasing the cooling time It also shows that the cooling channel form rectangle 2 has the maximum solidification percent for case 1 and in case 2 the changing of the cooling channels form has not a sensible effect on the solidification percent The same results can be obtained when we compared the solidification in the prod uct and the temperature distribution though the mould for differ ent forms with the same cross sectional area at the end of the cooling stage for cooling time 24 s for cooling cycle 25 as shown in Figs 6 and 7 respectively The results indicate that the cooling process is improved as the cooling channels tend to take the form of the product 4 2 Effect of cooling channels position To investigate the effect of the cooling channels position we di vided the proposed positions into four groups groups A and B for different positions of the bottom cooling channel with a fixed po sition of the top cooling channel and with vice versa for groups C and D for the same cooling channel form circular as illustrated in Fig 2 Fig 8 represents the effect of different cooling channel positions on the of solidification percent at the end of 25th cooling cycle for groups A and B lower cooling channel effect C and D upper cool ing channel effect with cooling time It indicates that for lower cooling channel position effect the cooling rate increases and hence the solidification percent of the polymer increases as the cooling channel approaches the polymer in the vertical direction position B has solidification percent greater than position A and with the same positions C and D The figure shows also the most efficient cooling rate is obtained as the cooling channel takes the position between 20 and 50 through the product length for Table 2 Material properties Material Density kg m 3 Specific heat J kg K Conductivity W m K Mould 7670 426 36 5 Polymer 938 1800 0 25 Air 1 17 1006 0 0263 29 2009 1786 1791 fect on the cooling rate of the product is not the same for different positions Engineering 60 65 ab H Hassan et al Applied Thermal The solidification degree distribution through the product at the end of cooling stage at the end of cooling time 24 s and 25th cool ing cycle for different locations of cooling channel is shown in Fig 9 and the temperature distribution throughout the mould and the polymer at the same instant for different cooling channels Temperature o C Time s 0 200 400 600 30 35 40 45 50 55 P1 P2 P3 P4 Fig 3 Temperature history of the first 30 cycles at locations Time s 30 35 40 45 50 55 60 65 P5 P6 P7 ab Temperature o C 0 200 400 600 Fig 4 Temperature history of the first 30 cycles at locations Solidification percent Coolingperiod constant perimeter Coolinvgperiod constant area 16 1618202224262830 0 68 0 72 0 76 0 8 0 84 0 88 0 92 0 96 Circle Rectangle1 Rectangle2 Square Circle Rectangle1 Rectangle2 Square 30282624222018 Fig 5 Changing the solidification percent of the polymer part with cooling time for different cooling channel forms 70 75 29 2009 1786 1791 1789 position is shown in Fig 10 When we examine the solidification degree of the product and the temperature distribution throughout the mold for different positions we find that as the cooling channel position moves toward the products the homogeneity of the tem perature distribution throughout the polymer and the mold during Temperature o C Time s 0 30 35 40 45 50 55 60 65 P1 P2 P3 P4 600500400300200100 P1 to P4 a without solidification b with solidification Time s 30 35 40 45 50 55 60 65 70 75 P5 P6 P7 Temperature o C 0 200 400 600 P5 to P7 a without solidification b with solidification Fig 6 Solidification percent distribution through the product for different cooling channels forms a rectangular 2 and b circular having the same cross sectional area 3 8 4 0 4 0 4 0 4 2 4 2 4 5 45 4 5 4 5 4 5 5 0 5 0 5 0 5 5 55 60 6 0 5 65 70 70 80 80 9 90 X Y 0 0 05 0 1 0 15 0 2 0 0 05 0 1 0 15 0 2 35 35 3 7 37 3 8 3 8 38 4 0 4 0 4 0 40 4 2 42 4 2 4 2 4 2 5 45 4 5 4 5 45 5 0 5 0 55 55 60 60 65 65 70 70 809 X Y 0 0 05 0 1 0 15 0 2 0 0 05 0 1 0 15 0 2 ab Fig 7 Temperature distribution through the mould for different cooling channels forms a circular and b rectangular 2 having the same cross sectional area Time s Solidification percent 20 0 82 0 84 0 86 0 88 0 9 0 92 0 94 0 96 0 98 1 B1 D3 B2 D3 B3 D3 B5 D3 B7 D3 A1 D3 A2 D3 A3 D3 A5 D3 A7 D3 Solidification percent 0 82 0 84 0 86 0 88 0 9 0 92 0 94 0 96 0 98 1 B2 C1 B2 C2 B2 C3 B2 C5 B2 D1 B2 D2 B2 D3 B2 D5 3028262422 Time s 20 3028262422 ab Fig 8 Changing the solidification percent of the polymer part with cooling time for different cooling channel positions a lower cooling channel positions A and B and b upper cooling channel positions C and D Fig 9 Solidification percent distribution through the product for different cooling channels positions for cooling time 24 s and 25th cooling period a B7 D3 b B2 D3 c B2 C5 and d B2 C3 1790 H Hassan et al Applied Thermal Engineering 29 2009 1786 1791 37 3 8 3 8 38 4 0 4 0 4 0 4 2 4 2 2 4 2 45 45 4 5 4 5 4 5 5 0 5 0 5 0 50 60 60 7 70 8 80 90 90 100 100 110110Y 0 05 0 1 0 15 0 2 3 5 3 7 37 3 8 3 8 38 4 0 4 0 4 0 4 2 4 2 4 5 4 5 4 5 5 0 50 5 0 5 55 5 5 60 6 0 65 65 5 70 70 75 7 80 80 9Y 0 05 0 1 0 15 0 2 a b positions H Hassan et al Applied Thermal Engineering 29 2009 1786 1791 1791 the solidification process decrease for example positions B2 D3 and B2 C3 The figure indicates that as the channel approaches the product in the horizontal direction and vertical direction the temperature distribution throughout the polymer divided into two regions during the cooling process B7 D3 B2 D3 C5 B2 C3 B2 and thus has the same effect on the solidification pro cess These two areas of the temperature distribution and that dif ferent cooling rate through the cooling process lead to different severe warpage and thermal residual stress in the final product which affect on the final product quality 5 Conclusion The variation of the temperature of the mould through a num ber of molding cycles is carried out The simulated results are in good agreement with the transient characteristic of the cyclic mold temperature variations described in 5 and It is found that there is a slightly difference in temperatures values between the simulated results and those described in 5 The effect of cooling channels form and the effect of its position on the temperatures distribution throughout the polymer and the solidification of 7 4 2 X 0 0 0 20 150 10 05 Fig 10 Temperature distribution through the mould for different cooling channels the product are studied The results indicate that as the cooling channels take the form of the product the cooling rate is im proved The position of cooling channels has a great effect on the cooling process and temperature distribution through the mould and the polymer The results show that the cooling system layout which performs minimum cooling time not necessary achieves optimum temperature distribution throughout the prod uct and the system layout must be optimized to achieve the both goals References 1 S H Tang Y M Kong S M Sapuan
收藏
編號(hào):7039345
類型:共享資源
大?。?span id="rnaumas" class="font-tahoma">3.62MB
格式:ZIP
上傳時(shí)間:2020-03-11
50
積分
- 關(guān) 鍵 詞:
-
插座
零件
塑料
注塑
模具設(shè)計(jì)
- 資源描述:
-
插座零件塑料注塑模具設(shè)計(jì),插座,零件,塑料,注塑,模具設(shè)計(jì)
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書(shū)面授權(quán),請(qǐng)勿作他用。