熱軋鋼板校平機(jī)設(shè)計(jì)含3張CAD圖
熱軋鋼板校平機(jī)設(shè)計(jì)含3張CAD圖,熱軋,鋼板,校平機(jī),設(shè)計(jì),CAD
附錄一:
破損鋼板在熱矯直過程中的原理
摘要:成型結(jié)構(gòu)鋼中最具代表性的一個(gè)基本組成就是鋼板。橋梁結(jié)構(gòu)的損壞主要表現(xiàn)在這些基礎(chǔ)鋼板以及它們的一些強(qiáng)的和/或者比較弱的軸的彎曲。這篇文章的目的就是描述鋼板熱矯直的基于 實(shí)驗(yàn)和分析的研究以及提出與鋼板應(yīng)用有關(guān)的一些工程學(xué)標(biāo)準(zhǔn)。我們組織一項(xiàng)實(shí)驗(yàn)計(jì)劃來研究鋼板在熱矯直中的反應(yīng)并且分析一些重要的影響該反應(yīng)的參數(shù)。實(shí)驗(yàn)中我們將各種鋼板加熱至 300 度以上。發(fā)現(xiàn)影響矯直的一些基本的因素有 V 字形熱度的角度、加熱過程中鋼的溫度和外部施加的力。加熱后的塑性變形直接與這些參數(shù)成比例。為了幫助工程師們?nèi)ヮA(yù)測(cè)熱矯直中鋼板的反應(yīng),我們得到一個(gè)簡(jiǎn)單的數(shù)學(xué)公式。這個(gè)公式反映了每 V 字形熱度的平均塑性變形與 V 字形角、加熱溫度、外界施加的力、熱膨脹系數(shù)和屈服應(yīng)力的關(guān)系。這個(gè)公式能夠很好地和實(shí)驗(yàn)數(shù)據(jù)吻合,而且是第一個(gè)包含有加熱溫度及外部力的大小的簡(jiǎn)單公式。這一分析方法也會(huì)逐漸地?cái)U(kuò)展到以下幾個(gè)方面:軋制成型、軸向加載的物質(zhì)和簡(jiǎn)單或復(fù)合的珩架結(jié)構(gòu)。
緒論
成型結(jié)構(gòu)鋼中最具代表性的一個(gè)基本組成就是鋼板。橋梁結(jié)構(gòu)的損壞主要表現(xiàn)在這些基礎(chǔ)鋼板以及它們的一些強(qiáng)的和/或者比較弱的軸的彎曲。這篇文章的目的就是描述鋼板熱矯直的基于實(shí)驗(yàn)和 分析的研究以及提出與鋼板應(yīng)用有關(guān)的一些工程學(xué)標(biāo)準(zhǔn)。這一工作形成了軋制成型中熱矯直擴(kuò)展的基礎(chǔ)。
幾個(gè)關(guān)于鋼板的 V 字形熱度的研究已經(jīng)實(shí)施。V 字形熱度指的是鋼板的強(qiáng)軸的矯直傾向的加熱曲線,我們將在以下的部分當(dāng)中進(jìn)行詳細(xì)的描述。這些研究已經(jīng)嘗試著去分析影響 V 字形熱度的參數(shù)并且演變出一個(gè)基于該數(shù)據(jù)的初步模型。Nicholls 和Weeerth(1972)描述了一個(gè)頂角在 24°~60°并且有一個(gè) 6°增量、大小為 211 的 V 字形熱度作用于一個(gè) 10mm 厚的 A36 鋼板上所產(chǎn)生的彎曲度。這個(gè) V 字形的深度也分為滿深度、四分之三深度和二分之一深度不等。除了得出 V 字形角和它的深度越大產(chǎn)生的彎曲越大這個(gè)結(jié)果外,他沒有做其他的有關(guān)這些參數(shù)的影響的估算。Roeder(1986)也做了一個(gè)關(guān)于未損壞的 V 字形熱度鋼板的研究。他采用了一些精密的檢測(cè)設(shè)備,如熱電偶、接觸式高溫計(jì)和應(yīng)變儀。另外還有常規(guī)的工具,如游標(biāo)卡尺和鋼板標(biāo)尺。由于這是第一次的嘗試著去從實(shí)驗(yàn)和分析的角度來量化鋼板在熱矯直過程中的很大范圍的一些參數(shù),所以這項(xiàng)工作是很有意義的。這些參數(shù)主要是 V 字形幾何學(xué)、樣本幾何學(xué)、加熱溫度、速度、鋼種、控制力、最初的殘余應(yīng)力和淬火。Roeder 的關(guān)于這些參數(shù)結(jié)論是基于 60 度左右的溫度得到的。結(jié)果這只有很少數(shù)的反復(fù)的熱度利用了同一參數(shù)。雖然從這個(gè)數(shù)據(jù)中我們可以得到它們的變化趨勢(shì),但是由于數(shù)據(jù)太少,限制了
對(duì)結(jié)果的量化價(jià)值。盡管這樣,他的研究卻給我們提供了這里所提到的很多實(shí)驗(yàn)工作的最初的基礎(chǔ)。Roeder 的大部分結(jié)論是:
l 一個(gè)實(shí)用的和安全的加熱上限是 650℃(1200℉)
l 當(dāng)加熱溫度保持在大約 720℃(1330℉)這個(gè)相變溫度以下時(shí),材料性能上的變化很小
l 由 V 字形熱度所產(chǎn)生的塑性變形是直接和 V 字形角和加熱溫度成正比的
l 由 V 字形熱度所產(chǎn)生的塑性變形是直接和在加熱過程中的 V 角的開口端集中的控制力成正比的
l 淬火是很有效的并且可能增加 V 字形熱度的變形,但是加熱溫度必須在相變溫度以下【盡管一些試驗(yàn)員認(rèn)為只有在加熱溫度低于 700℉或者 370℃才能進(jìn)行淬火】
l 塑性變形主要產(chǎn)生在 V 字形熱度區(qū)域以內(nèi)
l 塑性變形對(duì)鋼板的幾何形狀很敏感的。但是多數(shù)的敏感度都可以歸結(jié)于加熱速度和加熱流 程上的不同
這篇文章里的研究可以擴(kuò)展至 Roder 的工作并且包含足夠的用來定量這些和一些其它的結(jié)論的反復(fù)的數(shù)據(jù)。
關(guān)于熱矯直的文獻(xiàn)最近幾十年就有了,1989 年前就在一些文章中出現(xiàn)了有關(guān)它的評(píng)論。但是, 整個(gè)過程的工程學(xué)量化已經(jīng)缺少了。極少數(shù)技術(shù)人員目前還是用一些基于他們多年的經(jīng)驗(yàn)的方法來指導(dǎo)他們進(jìn)行維修。對(duì)于缺少這些經(jīng)驗(yàn)的工程人員來說,他們就需要一套解析程序來決定他們?cè)趺丛谝豁?xiàng)特殊修理中將熱矯直過程做好。由于經(jīng)濟(jì)上的原因,這些解析工具必須相當(dāng)?shù)目焖?、便于使用,并且能夠適應(yīng)不同的 V 字形幾何、加熱溫度范圍、外加負(fù)載和支持抑制。目前,存在著兩個(gè)極端:(1)一些極度簡(jiǎn)單的模型(Holt 1965,1971;Moberg 1979),這些模型并不能計(jì)算出溫度范圍或者內(nèi)在、外在的控制力對(duì)系統(tǒng)的影響;(2)全面的計(jì)算機(jī)模型(Chin 1962;Burbank 1968;Weerth 1971;Horton 1973;Roder 1985,1986,1987),這些模型是基于彈塑性有限元素或者有限條壓力分析和一個(gè)相似的熱量分析的。但是前者太簡(jiǎn)單以至于不能夠精確估算過程中的表現(xiàn);后者需要一個(gè)相當(dāng)長(zhǎng)的計(jì)算機(jī)計(jì)算過程,這樣也不是實(shí)用的辦公設(shè)計(jì)工具。結(jié)果,我們還是需要一個(gè)分析模型, 這種模型不僅實(shí)用,而且能夠提供全面的有關(guān)所有重要的精確的預(yù)先表現(xiàn)的結(jié)論。
一個(gè)沒有包含在比較簡(jiǎn)單的公式中的重要的考慮就是外在、內(nèi)在的控制力的影響。外在力是用 來產(chǎn)生彎曲活動(dòng)從而將工件拉直。在加熱過程中能夠在 V 角的開口端產(chǎn)生壓縮的外在力可以增加限制從而增加每一熱度所產(chǎn)生的變形。被 Holt 和 Moberg 引用的領(lǐng)域中的應(yīng)用涉及到控制力的使用。因?yàn)樵诖蠖鄶?shù)情況中,材料的單獨(dú)的抑制將會(huì)比完美的緊閉少,這似乎說明在被修理的結(jié)構(gòu)上的實(shí)
際的與預(yù)料的活動(dòng)之間的相互關(guān)系,就像 Holt 和 Moberg 所提到的那樣,最初是外在力的影響的結(jié)果。一個(gè)改善了的模型應(yīng)該百含有內(nèi)在、外在力的影響。
這篇文章的目的就是量化影響鋼板熱矯直的參數(shù),并且設(shè)計(jì)一個(gè)簡(jiǎn)單有效的程序來預(yù)測(cè)熱矯直 過程中變形了的鋼板的反應(yīng)。我們所選的方法必須首先就能夠分析熱矯直過程中可以產(chǎn)生重大影響 的所有參數(shù)。這個(gè)階段的完成就需要我們對(duì)早先的研究所獲得的試驗(yàn)數(shù)據(jù)進(jìn)行研究,并且進(jìn)行一項(xiàng) 更進(jìn)一步的試驗(yàn)過程,從中獲得另外的數(shù)據(jù)。當(dāng)我們將這兩者的數(shù)據(jù)結(jié)合起來后,一個(gè)用來預(yù)測(cè)鋼 板的反應(yīng)的分析程序就產(chǎn)生了。
實(shí)驗(yàn)計(jì)劃結(jié)果的評(píng)估V 角
研究者認(rèn)為其中一個(gè)影響鋼板塑性變形的最基本的參數(shù)就是 V 角(Holt 1971; Roder 11986; Avent 1989)。數(shù)據(jù)顯示出了塑性變形和 V 角之間的近乎線性的關(guān)系。正是因?yàn)檫@個(gè),大多數(shù)的數(shù)據(jù)必須和 V 角一起作為縱坐標(biāo),而塑性變形Wp 作為橫坐標(biāo)。這樣第一個(gè)最小二次方曲線就出現(xiàn)了。隨后的圖形就說明了這些變量之間的一致的比例關(guān)系。
V 角深度
以前的研究者(Holt 1971; Roder 1985)已經(jīng)得出這樣的結(jié)論:塑性變形和深度比 Rd 是成比例的,這個(gè)深度比就是指的 V 角深度 dv 與鋼板寬度 W 的比。對(duì) Roder 在 6507℃(12007℉)~6807℃
(61507℉)范圍內(nèi)的測(cè)試數(shù)據(jù)的再次研究對(duì)于 V 角深度的影響無關(guān)緊要。由于數(shù)據(jù)稀少,不論是深度比是 0.75 還是 0.67,都不會(huì)導(dǎo)致一貫發(fā)生的塑性變形。為了進(jìn)一步評(píng)估這一現(xiàn)象,我們又組織了一連串的實(shí)驗(yàn),深度比分別為 0.5、0.75 和 1,V 角從 207 變到 607。對(duì)于其中每一個(gè)情況,我們都用了至少 3 中溫度作用于最初平直的鋼板上,并且將結(jié)果求平均值。結(jié)果顯示在圖 2 中,對(duì)三種深度比、三種 V 角和 2 個(gè)增加了的比率進(jìn)行了對(duì)比。
增量比率反映了控制力常常在 V 字形熱度區(qū)域產(chǎn)生一個(gè)大小相當(dāng)于鋼板最大彎曲功率 25%或者50%的瞬間力。就像在圖 2 中看到的那樣,深度比 75%和 100%軌跡相近。實(shí)際上,75%的深度比在 6 中情況之中的一個(gè)情況中導(dǎo)致較大一些的塑性變形。當(dāng)和其它的兩個(gè)相比較時(shí),50%的深度比產(chǎn)生了 一個(gè)不穩(wěn)定的行為。在 6 個(gè)當(dāng)中的 3 中情況中,50%的深度比產(chǎn)生了較小的塑性變形。在另外的 3 中情況中,塑性變形是很相似的。
為了進(jìn)一步分析這種行為,我們將一些鋼板毀壞并且再將它們矯直。毀壞程度是很大的,以至于我們要在大多數(shù)的鋼板上都要施加至少 20 的熱度。因此,更多的令人滿意、意義重大的平均塑性變形就從這次測(cè)試中得到了。結(jié)果顯示在圖 3 中,對(duì)應(yīng)一種增量比 0.5 和兩個(gè) V 角深度比 0.75、1.0。
再次說明塑性變形的樣式和 V 角深度比沒有一個(gè)直接的關(guān)系。
因此,盡管直覺告訴我們,增加 V 角深度比可以增加塑性變形,但是對(duì)于這一結(jié)論卻沒有實(shí)驗(yàn)證據(jù)。我們可以得到如下結(jié)論,0.75~1.0 之間的 V 角深度比對(duì)塑性變形的影響是很小的。但是,
0.5 的 V 角深度比可能會(huì)減小塑性變形。
鋼板厚度和寬度
研究者一般認(rèn)為鋼板的厚度對(duì)塑性變形的影響是可以忽略的。唯一的數(shù)據(jù)說明鋼板厚度必須足夠小以便于熱量能夠平衡地滲透鋼板。實(shí)際的厚度一般在 19~25mm(3∕4-1 in.)之間。厚一點(diǎn)的鋼板可以兩邊都進(jìn)行加熱以保證熱量在厚度方向上的均衡滲透,或者將鋼板稍微傾斜也可以實(shí)現(xiàn)。圖 4 表示了不同厚度的鋼板的測(cè)試結(jié)果。
每一個(gè)長(zhǎng)條代表了作用于單獨(dú)一個(gè)鋼板的至少 3 個(gè)熱度的平均值。這個(gè)測(cè)試中沒有應(yīng)用控制力。結(jié)果說明可能發(fā)生在大多數(shù)熱度情況下的鋼板的變化。但是,對(duì)于三種不同的 V 角,并沒有鋼板厚度上的明顯的模式。結(jié)果的隨意性說明塑性變形不是鋼板厚度影響的結(jié)果。我們?cè)谇懊鎿碛休^少參數(shù)的測(cè)試中也發(fā)現(xiàn)了相似的傾向(Roder 1985)。
除了鋼板的厚度,鋼板的三種寬度也進(jìn)行了研究,示于圖 5 中。塑性變形是三種熱度情況下的變形的平均值。我們留心了一個(gè)作用在 102mm(4-in.)的鋼板上的罕見的極低的平均值。但是,卻沒有發(fā)現(xiàn)介于 203mm(8-in)和 302mm(12-in)寬度之間鋼板中的區(qū)別。這些測(cè)試的結(jié)果表明鋼板寬度和塑性變形之間并沒有一個(gè)清楚的關(guān)系。Roder(1985)所做的測(cè)試同樣說明了一個(gè)相似的傾向。
總起來說,鋼板厚度和寬度對(duì)塑性變形的影響是很小的。測(cè)試結(jié)果確確實(shí)實(shí)說明了熱矯直過程 中的鋼板反應(yīng)的變化情況。這里所說的波動(dòng)對(duì)變化特征的影響比鋼板幾何形狀對(duì)它的影響要顯著。 從而,鋼板幾何形狀是作為影響塑性變形行為的輔助因素來看待的。
溫度
熱矯直中一個(gè)最重要的也是很難去控制的參數(shù)就是被加熱材料厚度方向上的溫度。影響溫度的因素有火焰口的大小、火焰的強(qiáng)烈程度、加熱速度和鋼板的厚度。在這個(gè)實(shí)驗(yàn)中,Roder(1985)讓富有經(jīng)驗(yàn)的操作者加熱,并且對(duì)其熱度進(jìn)行了仔細(xì)的測(cè)量。他發(fā)現(xiàn)這些操作者,在通過顏色來辨別溫度時(shí),通常判斷誤差大約為 567℃(1007℉),而且在很多情況下都有 1117℃(2007℉)那么大。從而, 在溫度控制中有相當(dāng)可觀的變化,即使這是很有經(jīng)驗(yàn)的人做的。
為了進(jìn)一步清楚的定義 Roder 實(shí)驗(yàn)中數(shù)據(jù)所顯示的變形行為,我們?cè)阡摪迳献饔昧撕芏嗟募訜釡囟葋磉M(jìn)行研究,從 3707℃到 8157℃,并且有一個(gè) 567℃的增量。結(jié)果顯示在圖 6 中,這里每一個(gè)數(shù)據(jù)點(diǎn)代表了三種熱度循環(huán),并且這些點(diǎn)由一條直線連接起來以便于辨認(rèn)。
這里一個(gè)很清楚并且有規(guī)則的隨著溫度的增加塑性變形也增加的曲線關(guān)系就有了。曲線之所以 那么有規(guī)律,是因?yàn)檫@些溫度的調(diào)節(jié)是由一個(gè)技師來完成的,并且增量的調(diào)節(jié)也是步調(diào)一致的。
大多數(shù)研究者認(rèn)為對(duì)于除了淬火和調(diào)質(zhì)處理了的高強(qiáng)度鋼以外的所有的鋼板的最大的加熱溫度是 6507℃。對(duì)于碳鋼,更高的溫度會(huì)導(dǎo)致更大的變形;但是,平面以外的扭曲有可能發(fā)生,而且表面損壞如蝕斑在 7607-8707℃時(shí)會(huì)產(chǎn)生。同時(shí),溫度超過 7007℃可能導(dǎo)致分子組成的變化進(jìn)而可能導(dǎo)致冷卻時(shí)材料性能上的變化。在這點(diǎn)上的極限安全溫度是 6507℃。對(duì)于淬火、調(diào)質(zhì)處理的鋼,熱矯直過程可以進(jìn)行,但是對(duì)于A514 和A709(等級(jí)在100 和100W)溫度必須控制在5937℃,對(duì)于A709(等級(jí)為 70W)溫度為 5667℃,以保證調(diào)質(zhì)溫度不會(huì)超過所需的溫度并且不會(huì)影響材料的性能。允許的能被熱矯直的淬火、調(diào)質(zhì)鋼和 Shanafelt 和 Horn(1984)所建議的正好相反;但是,文章中并沒有提及反作用。
為了控制加熱溫度,對(duì)于不同厚度的鋼板,我們要采取不同的加熱速度和火焰口的大小、類型。 但是只要溫度很快達(dá)到合適的水平,收縮影響還是相似的。這個(gè)結(jié)論已經(jīng)被兩個(gè)實(shí)驗(yàn)證明了,在這兩個(gè)實(shí)驗(yàn)中,我們選擇了不同的鋼板,也用了不同強(qiáng)烈程度的火焰。其一,我們用了低強(qiáng)度的火焰緩慢地增加到 6507℃,另一個(gè)中,火焰強(qiáng)度很大同時(shí)快速地增大到最高溫度。兩種情況下地變形很相似。
控制力
控制力這個(gè)術(shù)語既可以是外在的力,也可以是內(nèi)在的力。這些力如果能被合理的利用,可以促 進(jìn)矯直過程。但是,不能被合理地理解,控制力會(huì)擾亂甚至是阻礙矯直過程。熱矯直地基本理論就 是產(chǎn)生塑性變形導(dǎo)致厚度方向上的擴(kuò)充,然后就是冷卻階段的縱向彈性收縮。
盡管操作者已經(jīng)意識(shí)到在矯直過程中的控制力的重要性,但是很少有研究者去量化它的影響。
我們組織了一連串的測(cè)試用來估計(jì)這個(gè)參數(shù)。實(shí)驗(yàn)當(dāng)中,我們?cè)谝粔K鋼板上作用了一個(gè)控制力,最后這個(gè)控制力在強(qiáng)軸方向上產(chǎn)生了一個(gè)傾向于減小 V 角的瞬間力。這個(gè)瞬間力是沒有量綱的,它只是在 V 角處產(chǎn)生了這個(gè)瞬間力的比率 M j M p 。這個(gè)測(cè)試包含有從 0 到 50%變化的控制比,其中有四個(gè)不同的 V 角而且 V 角延伸至要么四分之三鋼板厚度要么整個(gè)鋼板厚度。結(jié)果顯示在圖 7 和 8 中。
從這個(gè)數(shù)據(jù)中我們得出如下的結(jié)論:塑性變形的變化和控制比的變化成比例的,合適的外在負(fù)載會(huì)很大程度上促進(jìn)熱矯直過程。Roder(1985) 也研究了不同的控制力的影響,也發(fā)現(xiàn)了相似的表現(xiàn)。但是數(shù)據(jù)點(diǎn)的數(shù)量很有限。
圖 7 和 8 中顯示的結(jié)果是基于無形變的鋼板在不同的數(shù)據(jù)點(diǎn)上進(jìn)行了三到四次的加熱得出的。
任何一個(gè)確定的參數(shù)的總的數(shù)據(jù)點(diǎn)大約都是 6 或者更少。盡管這數(shù)據(jù)說明了基本參數(shù)所所引起的變化傾向,但是數(shù)據(jù)太少以致于不能夠包含令人滿意的價(jià)值。為了彌補(bǔ)這個(gè)缺陷,我們做了另外一組 實(shí)驗(yàn),這實(shí)驗(yàn)是用了最初是被損壞了的同樣 6mm 厚的鋼板,然后進(jìn)行加熱一直到矯直完成。這兩個(gè)鋼板被加熱至熱度為 20 到 100。表格一中給出了這個(gè)實(shí)驗(yàn)中各個(gè)參數(shù)和塑性變形的概要情況。
加熱溫度是 6507℃。其中的一些結(jié)果被劃分在圖 9 中用以說明控制力的影響。平均是三種情況下的平均數(shù)。平均數(shù)的 95%的置信區(qū)間也示于圖 9 中,它提供了熱矯直中典型的分散的測(cè)驗(yàn)數(shù)據(jù)。我們?cè)僖淮伟l(fā)現(xiàn)塑性變形和控制力時(shí)成比例的。
我們沒有發(fā)現(xiàn)其中一個(gè)很有趣的現(xiàn)象,那就是最初的幾次加熱導(dǎo)致了相當(dāng)大的塑性變形,特別 是第一次加熱。這些最初的加熱過后,塑性變形就一致變得比較小,并且后來的加熱中再也沒有顯 示出什么有意義的變化。這種現(xiàn)象要?dú)w因于在損壞過程中產(chǎn)生的最初的殘余應(yīng)力。這個(gè)結(jié)果的含義 就是理論公式應(yīng)該建立在有相當(dāng)多的實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上,而不是只有幾個(gè)數(shù)據(jù)。這里所提到的所有 的數(shù)據(jù)中,序列中所有熱度的平均值都應(yīng)用到了。就像預(yù)料中的那樣,當(dāng) 3 個(gè)或多個(gè)熱度的平均值
作用于平直鋼板上,10 個(gè)或者更多的熱度的平均值作用于損壞了的鋼板上時(shí)候,二者每一熱度所發(fā)生的變化是很相似的。
第二種類型的有可能施加到鋼板的外部控制力就是軸向控制力。同樣也進(jìn)行了一連串的測(cè)試, 這個(gè)測(cè)試是對(duì)于每一 V 角我們都在鋼板上施加了軸向的迭加負(fù)載。這個(gè)負(fù)載產(chǎn)生了一個(gè) 138MP 的軸向應(yīng)力或者說是相當(dāng)于公稱屈服應(yīng)力 56%的實(shí)際應(yīng)力。這些結(jié)果表示在圖 8 中,以便于和彎曲控制力產(chǎn)生的結(jié)果相比較。應(yīng)用軸向載荷并不是一個(gè)很有效增加塑性變形的方法。
為了概括這個(gè)實(shí)驗(yàn)研究的結(jié)果,已經(jīng)發(fā)現(xiàn)的由 V 角產(chǎn)生的對(duì)塑性變形有很重要的影響的參數(shù)主要有:(1)V 角;(2)鋼板溫度;(3)外在的控制力。V 角深度在通常范圍內(nèi),也就是鋼板寬度的四分之三或者更大,看起來對(duì)變形影響很小。同樣地,只要是需要的加熱模式和溫度能夠達(dá)到,鋼板的 尺寸對(duì)變形的影響也很小。
概要和結(jié)論
由于鋼板是任何軋制或者建筑的基本的元素,所以理解鋼板在熱矯直過程中的反應(yīng)是最基本的。 一些熱矯直的實(shí)驗(yàn)過程都已經(jīng)備份了文件,這些實(shí)驗(yàn)是對(duì) 70 的鋼板樣品采用近乎 600 的加熱循環(huán)來進(jìn)行的。我們對(duì)很多因素進(jìn)行了估計(jì)以便于了解它們對(duì)塑性變形的影響,這些塑性變形是鋼板上每一 V 字形熱度產(chǎn)生的。另外,我們也建立了一個(gè)數(shù)學(xué)模型用來預(yù)測(cè)塑性變形的大小。
在研究的實(shí)際范圍內(nèi),熱矯直過程中對(duì)塑性變形有著最重要的影響的一個(gè)因素就是 V 字形熱度的角度、V 角區(qū)域的最高溫度和外部力。已經(jīng)證實(shí)了塑性變形和 V 角、溫度、外部力是有著直接的
比例關(guān)系的,盡管數(shù)據(jù)上有一點(diǎn)波動(dòng)。另一方面,和鋼板寬度有關(guān)的 V 角的深度對(duì)于3 鋼板寬度 75%
的 V 角深度并沒有什么重大意義。只要是熱供應(yīng)過程中熱量能夠很好的滲透鋼板,鋼板厚度也可視
為無關(guān)緊要。為了幫助工程師來預(yù)測(cè)鋼板在熱矯直過程中的反應(yīng),我們建立了一個(gè)簡(jiǎn)單的數(shù)需公式。 這個(gè)公式表示的是每一的熱度上的平均塑性變形與 V 角、鋼板溫度、外部力的大小、熱膨脹系數(shù)和屈服應(yīng)力之間的關(guān)系。公式和實(shí)驗(yàn)數(shù)據(jù)吻合的很好,并且是第一個(gè)包含有鋼板加熱溫度、外部力的大小的簡(jiǎn)單計(jì)算公式。這種分析方法將會(huì)擴(kuò)展至很大,從而包含有軋制成型行為,軸向加載物質(zhì)和簡(jiǎn)單的和復(fù)雜的桁架。
河海大學(xué)文天學(xué)院本科畢業(yè)設(shè)計(jì)(論文)
附錄二:
HEAT STRAIGHTENING DAMAGED STEEL PLATE ELEMENTS
By R. Richard Avent,1 David J. Mukai,2 Paul F. Robinson,3 and Randy
J. Boudreaux4
ABSTRACT: The fundamental element of any structural steel shape is the flat plate.
Damage to bridge structures consists of these plate elements, in combination, bent about their strong and/or weak axes. The purpose of this paper is to describe experimental and analytical research on heat straightening as applied to plates and to present related engineering criteria for its
use. An experimental program was conducted to evaluate the response of plates to heat straightening and to identify important parameters influencing behavior. Over 300 heats were applied to a variety of plates. The primary factors influencing straightening were the angle of the vee heat, steel temperature during heating, and external restraining forces. The plastic rotation after heating was directly proportional to these parameters. To aid engineers in predicting plate
movements during heat straightening, a simple mathematical formula was developed. This equation relates the average plastic rotation per vee heat to vee angle, steel temperature, magnitude of restraining force, coefficient of thermal expansion, and yield stress. The formula compares well to the experimental data and is the first simple formula available that includes the
parameters of heating temperature and magnitude of restraining force. The form of this analytical approach also will lend itself toward extensions, including the behavior of rolled shapes, axially loaded members, and composite and noncomposite girders.
INTRODUCTION
The fundamental element of any structural steel shape is the flat plate. Damage to bridge structures consists of these plate elements, in combination, bent about their strong and/or weak axes. The purpose of this paper is to describe experimental and analytical research on heat
straightening as applied to plates and to present related engineering design criteria for its use. This work forms the basis for extensions to heat straightening of rolled shapes.
Several detailed studies have been conducted for vee heats applied to plates. The vee heat is the
59
usual heating pattern for straightening plates bent about their strong axis and is explained in detail in a later section. These studies have attempted to identify parameters that influence vee heats and to develop predictive models based on this data. Nicholls and Weerth (1972) described the bends produced by 211 vee heats whose apex angle varied from 247 to 607 in 67 increments applied to
10- mm (3/8-in.) thick A36 steel plate. The vee depth was also varied over full depth, three-fourth depth, and onehalf depth. No attempt was made to evaluate the effect of these parameters other than the general result that the greater the vee angle and depth, the greater the bend produced.
Roeder (1986) also conducted a study on undamaged vee heated plates. He employed sophisticated monitoring equipment such as thermocouples, contact pyrometers, and strain gauges, as well as more conventional tools such as vernier caliper and a steel ruler. His work is particularly significant as the first attempt to both experimentally and analytically quantify heatstraightening behavior for plates over a wide range of parameters. The parameters included
vee geometry, specimen geometry, heating temperature and rate, steel grade, restraining force, initial residual stresses, and quenching. Roeder’s conclusions were based on approximately 60 heats over a wide range of parameters. As a result there were relatively few
re-petitive heats using identical parameters. Although trends could be drawn from this data, its sparseness limited the quantitative value of the results. However, his research provided the initial basis for much of the experimental work reported here. Roeder’s most significant conclusions
were
? A practical and safe upper heating treatment limit is 6507C (1,2007F).
? Changes in material properties are small when the heating temperature remains below the phase transition temperature of approximately 7207C (1,3307F).
? The rotation produced by a vee heat is directly proportional to vee angle and heating
temperature.
? The rotation produced by a vee heat is directly proportional to restraining forces that produce compression in the open end of the vee during heating.
? Quenching is effective and may increase vee heat rotations, but heating temperatures
should be kept below the phase transition temperature [although some practitioners recommend quenching only if the steel temperature is below 7007F or (3707C)].
? Plastic strain occurs primarily within the vee heat region.
? Plastic strain is somewhat sensitive to geometry of the plate. However, much of this sensitivity can be attributed to differences in rate of heating and heat flow. The research described in this paper extends Roeder’s work and includes enough repetitive data points to quantify these
and other conclusions.
Literature on heat straightening has been available for many years as reviewed in a
state-of-the-art paper by Avent (1989). However, engineering quantification of the process has been lacking. The handful of practitioners currently using the method rely extensively on their many years of experience to guide them through a repair. An engineer lacking this wealth of experience needs a set of analytical procedures to determine how best to apply the
heat-straightening process to a particular repair. These analytical tools, for reasons of economy, should be relatively fast, easy to apply, and allow for such considerations as different vee geometries, temperature ranges, external loadings, and support restraints. At present, two extremes exist: (1) Overly simplistic models (Holt 1965, 1971; Moberg 1979) that cannot take into account the effect of either temperature variations or internal and external restraint; and (2) comprehensive computer models (For Chin 1962; Burbank 1968; Weerth 1971; Horton 1973; Roeder 1985, 1986, 1987) based on elastic-plastic finite-element or finite-strip stress analysis combined with a similar thermal analysis. Whereas the former is too simplistic to accurately
predict behavior, the latter requires such lengthy computational effort as to not be practical for design office use. As a result, there is a need for an analytical model that offers both practicality and comprehensive inclusion of all important variables to accurately predict behavior.
An important consideration not included in the more simple formulations is the influence of external and internal restraining forces. External forces typically are applied to produce bending moments tending to straighten the member. The external forces, producing compression on the
open end of the vee during heating, will increase the available confinement and, therefore,
increase the rotation produced per heat. The field applications cited by both Holt and Moberg involved the use of restraining forces. Because in most cases the material restraint alone will be less than perfect confinement, it seems likely that any correlation between the predicted and
actual movement in the structures being repaired, as noted by both Holt and Moberg, is
primarily due to the influence of the external forces. An improved analytical model should include the effects of both internal and external restraints.
The purpose of this paper is to quantify the parameters influencing the heat straightening of plate elements and to develop simple yet efficient procedures for predicting the response of deformed steel plates during the heat-straightening process. The approach chosen was to first identify all parameters that have an important influence on the heat-straightening process. This phase was accomplished by studying the experimental data available from previous research as well as by conducting an extensive experimental program to provide additional data. After synthesizing this experimental data, an analytical procedure for predicting member response was
developed.
EVALUATION OF RESULTS OF EXPERIMENTAL PROGRAM
Vee Angle
Researchers agree that one of the most fundamental parameters influencing the plastic rotation of a plate is the vee angle (Holt 1971; Roeder 1986; Avent 1989). The data shows a fairly linear relationship between plastic rotation and vee angle. For this reason, most data will be plotted with the vee angle as the ordinate and plastic rotation wp as the abscissa. A first-order
least-squares curve fit will sometimes be shown. Plots in succeeding sections show a consistent proportional relationship between these variables.
Depth of Vee
Past researchers (Holt 1971; Roeder 1985) have concluded that the plastic rotation is proportional to the depth ratio Rd, which is the ratio of vee depth dv to plate width W. A review of Roeder’s test data in the range of 6507C (6807) [1,2007F (61507)] is inconclusive as to vee depth effect. Recognizing that the data was sparse, neither the depth ratio of 0.75 nor 0.67 produced plastic rotations that were consistently hiearchial. To further evaluate this behavior, a series of tests was conducted for depth ratios of 0.5, 0.75, and 1.0 and vee angles ranging from 207 to 607. At least three heats were conducted on initially straight plates for each case and the
results averaged. The results are shown in Fig. 2 for a combination of three depth ratios, three vee angles, and two jacking ratios.
The jacking ratios reflect that a jacking force was used to create a moment at the vee heat zone equal to either 25 or 50% of the ultimate bending capacity of the plate. As can be seen from Fig. 2, the depth ratios of 75 and 100% track each other well. In fact the 75% depth ratio resulted in slightly larger plastic rotations in all but one of the six cases. The 50% depth ratio resulted in an erratic behavior when compared to the other two. In three of the six cases the 50% depth ratio produced much smaller plastic rotations. In the other three cases, the plastic rotations were similar.
To further verify this behavior, a series of plates was damaged and straightened. The degree of damage was large enough that at least 20 heats were required for most of these plates. Therefore, more statistically significant average plastic rotations were obtained from these tests. Results are compared in Fig. 3 for a jacking ratio of 0.5 and two vee depth ratios, 0.75 and 1.0. Again the pattern of plastic rotations does not have a direct correlation to the vee depth ratios.
Therefore, although it would seem intuitive that increasing the vee depth would increase the plastic rotation, there is no experimental justification for such a general statement. It can be concluded that the variation of vee depth ratios between 0.75 and 1.0 has little influence on plastic rotation. However, a vee depth ratio of 50% may reduce the plastic rotations.
Plate Thickness and Width
Researchers have generally considered plate thickness to have a negligible effect on plastic rotation. The only reservation has been expressed that the plate should be thin enough to allow a relatively uniform penetration of the heat through the thickness. The practical limiting value is on the order of 19–25 mm (3/4–1 in.). Thicker plates can be heated on both sides simultaneously to ensure a uniform distribution through the thicknesses, or a rosebud tip can be used. The results from tests involving different plate thicknesses are shown in Fig. 4.
Each bar represents the average of at least three heats on a single plate. No jacking forces were used in these tests. The results illustrate the level of variability that may occur among groups of heats. However, there is no discernable pattern among the plate thicknesses for the three different vee angles used. The randomness of these results indicates that plastic rotation is not a function of plate thickness. A similar trend was found in earlier tests with fewer variables (Roeder 1985).
In addition to thickness, three plate widths were studied, as shown in Fig. 5.
The plastic rotations are the average of three heats. An unusually low average was observed for the 102-mm (4-in.) width. However, little difference was found between the 203-mm (8-in.) and 302-mm (12-in.) widths. The results of these tests show no clear relationship between plastic rotation and plate width. T
收藏
編號(hào):29148875
類型:共享資源
大?。?span id="yq3hpdi" class="font-tahoma">2.88MB
格式:ZIP
上傳時(shí)間:2021-09-28
25
積分
- 關(guān) 鍵 詞:
-
熱軋
鋼板
校平機(jī)
設(shè)計(jì)
CAD
- 資源描述:
-
熱軋鋼板校平機(jī)設(shè)計(jì)含3張CAD圖,熱軋,鋼板,校平機(jī),設(shè)計(jì),CAD
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。