2018-2019高中數學 第三講 柯西不等式與排序不等式 3.1 二維形式的柯西不等式教案 新人教A版選修4-5.docx
《2018-2019高中數學 第三講 柯西不等式與排序不等式 3.1 二維形式的柯西不等式教案 新人教A版選修4-5.docx》由會員分享,可在線閱讀,更多相關《2018-2019高中數學 第三講 柯西不等式與排序不等式 3.1 二維形式的柯西不等式教案 新人教A版選修4-5.docx(5頁珍藏版)》請在裝配圖網上搜索。
3.1二維形式的柯西不等式 一、教學目標 1.認識柯西不等式的幾種不同形式,理解其幾何意義. 2.通過運用柯西不等式分析解決一些簡單問題. 二、課時安排 1課時 三、教學重點 認識柯西不等式的幾種不同形式,理解其幾何意義. 四、教學難點 通過運用柯西不等式分析解決一些簡單問題. 五、教學過程 (一)導入新課 復習基本不等式。 (二)講授新課 教材整理 二維形式的柯西不等式 內容 等號成立的條件 代數形式 若a,b,c,d都是實數,則(a2+b2)(c2+d2)≥ 當且僅當 時,等號成立 向量形式 設α,β是兩個向量,則|αβ|≤|α||β| 當且僅當 ,或,等號成立 三角形式 設x1,y1,x2,y2∈R,那么+≥ 當且僅當時,等號成立 (三)重難點精講 題型一、二維柯西不等式的向量形式及應 例1已知p,q均為正數,且p3+q3=2.求證:p+q≤2. 【精彩點撥】 為了利用柯西不等式的向量形式,可分別構造兩個向量. 【自主解答】 設m=p,q,n=(p,q),則 p2+q2=pp+qq=|mn|≤|m||n| ==. 又∵(p+q)2≤2(p2+q2), ∴≤p2+q2≤, ∴≤,則(p+q)4≤8(p+q). 又p+q>0, ∴(p+q)3≤8,故p+q≤2. 規(guī)律總結: 使用二維柯西不等式的向量形式證明不等式,關鍵是合理構造出兩個向量.同時,要注意向量模的計算公式|a|=對數學式子變形的影響. [再練一題] 1.若本例的條件中,把“p3+q3=2”改為“p2+q2=2”,試判斷結論是否仍然成立? 【解】 設m=(p,q),n=(1,1), 則p+q=p1+q1=|mn|≤|m||n|=. 又p2+q2=2. ∴p+q≤=2. 故仍有結論p+q≤2成立. 題型二、運用柯西不等式求最值 例2 若2x+3y=1,求4x2+9y2的最小值. 【精彩點撥】 由2x+3y=1以及4x2+9y2的形式,聯系柯西不等式,可以通過構造(12+12)作為一個因式而解決問題. 【自主解答】 由柯西不等式得(4x2+9y2)(12+12)≥(2x+3y)2=1. ∴4x2+9y2≥, 當且僅當2x1=3y1, 即x=,y=時取等號. ∴4x2+9y2的最小值為. 規(guī)律總結: 1.利用柯西不等式求最值,不但要注意等號成立的條件,而且要善于配湊,保證出現常數結果. 2.常用的配湊的技巧有:①巧拆常數;②重新安排某些項的次序;③適當添項;④適當改變結構,從而達到運用柯西不等式求最值的目的. [再練一題] 2.若3x+4y=2,試求x2+y2的最小值及最小值點. 【解】 由柯西不等式(x2+y2)(32+42)≥(3x+4y)2,得25(x2+y2)≥4. 所以x2+y2≥, 當且僅當=時,“=”成立.為求最小值點,需解方程組∴ 因此,當x=,y=時,x2+y2取得最小值,最小值為,最小值點為. 題型三、二維柯西不等式代數形式的應用 例3已知|3x+4y|=5,求證:x2+y2≥1. 【精彩點撥】 探求已知條件與待證不等式之間的關系,設法構造柯西不等式進行證明. 【自主解答】 由柯西不等式可知(x2+y2)(32+42)≥(3x+4y)2,所以(x2+y2)≥. 又因為|3x+4y|=5, 所以=1, 即x2+y2≥1. 規(guī)律總結: 1.利用二維形式的柯西不等式證明時,要抓住柯西不等式的結構特征,必要時,需要將數學表達式適當變形. 2.變形往往要求具有很高的技巧,必須善于分析題目的特征,根據題設條件,綜合地利用添、拆、分解、組合、配方、變量代換、數形結合等方法才能發(fā)現問題的本質,找到突破口. [再練一題] 3.設a,b∈R+且a+b=2.求證:+≥2. 【證明】 根據柯西不等式,有 [(2-a)+(2-b)]=[()2+()2]+ ≥=(a+b)2=4. ∴+≥=2, 當且僅當=, 即a=b=1時等號成立. ∴+≥2. (四)歸納小結 二維柯西不等式— (五)隨堂檢測 1.設x,y∈R,且2x+3y=13,則x2+y2的最小值為( ) A. B.169 C.13 D.0 【解析】 (2x+3y)2≤(22+32)(x2+y2), ∴x2+y2≥13. 【答案】 C 2.已知a,b∈R+,且a+b=1,則(+)2的最大值是( ) A.2 B. C.6 D.12 【解析】 (+)2 =(1+1)2 ≤(12+12)(4a+1+4b+1)=2[4(a+b)+2] =2(41+2)=12, 當且僅當=, 即a=b=時等號成立.故選D. 【答案】 D 3.平面向量a,b中,若a=(4,-3),|b|=1,且ab=5,則向量b=________. 【解析】 |a|==5,且 |b|=1, ∴ab=|a||b|, 因此,b與a共線,且方向相同, ∴b=. 【答案】 六、板書設計 3.1二維形式的柯西不等式 教材整理 二維形式的柯西不等式 例1: 例2: 例3: 學生板演練習 七、作業(yè)布置 同步練習:3.1二維形式的柯西不等式 八、教學反思- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2018-2019高中數學 第三講 柯西不等式與排序不等式 3.1 二維形式的柯西不等式教案 新人教A版選修4-5 2018 2019 高中數學 三講 不等式 排序 二維 形式 教案 新人 選修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
相關資源
更多
正為您匹配相似的精品文檔
相關搜索
鏈接地址:http://kudomayuko.com/p-6252075.html