2020高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 數(shù)列 課時(shí)作業(yè)31 數(shù)列求和 文.doc
《2020高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 數(shù)列 課時(shí)作業(yè)31 數(shù)列求和 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 數(shù)列 課時(shí)作業(yè)31 數(shù)列求和 文.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)作業(yè)31 數(shù)列求和 [基礎(chǔ)達(dá)標(biāo)] 1.[2019湖北省四校聯(lián)考]在數(shù)列{an}中,a1=2,an是1與anan+1的等差中項(xiàng). (1)求證:數(shù)列是等差數(shù)列,并求{an}的通項(xiàng)公式; (2)求數(shù)列的前n項(xiàng)和Sn. 解析:(1)∵an是1與anan+1的等差中項(xiàng), ∴2an=1+anan+1,∴an+1=, ∴an+1-1=-1=,∴==1+, ∵=1,∴數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列, ∴=1+(n-1)=n,∴an=. (2)由(1)得==-, ∴Sn=+++…+=1-=. 2.[2019福建福州六校聯(lián)考]已知數(shù)列{an}的前n項(xiàng)和Sn=,等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若b1=a1+1,b2-a2=2. (1)求數(shù)列{an},{bn}的通項(xiàng)公式; (2)求滿足Tn+an>300的最小的n值. 解析:(1)a1=S1=1, n>1時(shí),an=Sn-Sn-1=-=n, 又n=1時(shí),a1=n成立,∴an=n(n∈N*), 則由題意可知b1=2,b2=4, ∴{bn}的公比q==2,∴bn=2n(n∈N*). (2)Tn==2(2n-1),Tn+an=2(2n-1)+n, ∴Tn+an隨n增大而增大, 又T7+a7=2127+7=261<300,T8+a8=2255+8=518>300, ∴所求最小的n值為8. 3.[2019石家莊高中質(zhì)量檢測(cè)]已知數(shù)列{an}滿足:a1=1,an+1=an+. (1)設(shè)bn=,求數(shù)列{bn}的通項(xiàng)公式; (2)求數(shù)列{an}的前n項(xiàng)和Sn. 解析:(1)由an+1=an+,可得=+, 又bn=,∴bn+1-bn=,由a1=1,得b1=1, 累加可得(b2-b1)+(b3-b2)+…+(bn-bn-1)=++…+,即bn-b1==1-,∴bn=2-. (2)由(1)可知an=2n-,設(shè)數(shù)列的前n項(xiàng)和為T(mén)n, 則Tn=+++…+ ①, Tn=+++…+?、?, ①-②得Tn=+++…+-=-=2-, ∴Tn=4-. 易知數(shù)列{2n}的前n項(xiàng)和為n(n+1), ∴Sn=n(n+1)-4+. 4.[2019廣州市綜合測(cè)試]已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列. (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)數(shù)列{bn}滿足++…+=5-(4n+5)n,求數(shù)列{bn}的前n項(xiàng)和Tn. 解析:(1)因?yàn)閿?shù)列是首項(xiàng)為1,公差為2的等差數(shù)列, 所以=1+2(n-1)=2n-1,所以Sn=2n2-n. 當(dāng)n=1時(shí),a1=S1=1; 當(dāng)n≥2時(shí),an=Sn-Sn-1=(2n2-n)-[2(n-1)2-(n-1)]=4n-3. 當(dāng)n=1時(shí),a1=1也符合上式, 所以數(shù)列{an}的通項(xiàng)公式為an=4n-3. (2)當(dāng)n=1時(shí),=,所以b1=2a1=2. 當(dāng)n≥2時(shí),由++…+=5-(4n+5)n,① 得++…+=5-(4n+1)n-1.② ①-②,得=(4n-3)n. 因?yàn)閍n=4n-3,所以bn==2n(當(dāng)n=1時(shí)也符合), 所以==2,所以數(shù)列{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,所以Tn==2n+1-2. 5.[2019鄭州一中高三入學(xué)測(cè)試]在等差數(shù)列{an}中,已知a3=5,且a1,a2,a5為遞增的等比數(shù)列. (1)求數(shù)列{an}的通項(xiàng)公式; (2)若數(shù)列{bn}的通項(xiàng)公式 (k∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn. 解析:(1)設(shè)等差數(shù)列{an}的公差為d,易知d≠0, 由題意得,(a3-2d)(a3+2d)=(a3-d)2, 即d2-2d=0,解得d=2或d=0(舍去), 所以數(shù)列{an}的通項(xiàng)公式為an=a3+(n-3)d=2n-1. (2)當(dāng)n=2k,k∈N*時(shí), Sn=b1+b2+…+bn=b1+b3+…+b2k-1+b2+b4+…+b2k=a1+a2+…+ak+(20+21+…+2k-1)=+=k2+2k-1=+2-1; 當(dāng)n=2k-1,k∈N*時(shí),n+1=2k, 則Sn=Sn+1-bn+1=+2-1-2-1=+2. 綜上, (k∈N*). 6.[2019安徽省高中聯(lián)合質(zhì)量檢測(cè)]已知{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=1,a2=b2,a5=b3. (1)求數(shù)列{an},{bn}的通項(xiàng)公式; (2)記Sn=++…+,是否存在m∈N*,使得Sm≥3成立,若存在,求出m,若不存在,請(qǐng)說(shuō)明理由. 解析:(1)設(shè)數(shù)列{an}的公差為d(d≠0),數(shù)列{bn}的公比為q, 則由題意知∴d=0或d=2, ∵d≠0,∴d=2,q=3,∴an=2n-1,bn=3n-1. (2)由(1)可知, Sn=++…+=+++…++, Sn=+++…++,兩式相減得,Sn=1+++…+-=1+-=2-<2,∴Sn<3.故不存在m∈N*,使得Sm≥3成立. [能力挑戰(zhàn)] 7.[2019山東淄博模擬]已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對(duì)任意n∈N*,總有b1b2b3…bn-1bn=an+2成立. (1)求數(shù)列{an}和{bn}的通項(xiàng)公式; (2)記cn=(-1)n,求數(shù)列{cn}的前n項(xiàng)和Tn. 解析:(1)設(shè){an}的公差為d,則a10=a1+9d=19,S10=10a1+d=100. 解得a1=1,d=2,所以an=2n-1. 所以b1b2b3…bn-1bn=2n+1,① 當(dāng)n=1時(shí),b1=3,當(dāng)n≥2時(shí),b1b2b3…bn-1=2n-1.② ①②兩式相除得bn=(n≥2). 因?yàn)楫?dāng)n=1時(shí),b1=3適合上式,所以bn=(n∈N*). (2)由已知cn=(-1)n, 得cn=(-1)n =(-1)n, 則Tn=c1+c2+c3+…+cn =-+-+…+(-1)n, 當(dāng)n為偶數(shù)時(shí), Tn=-+-+…+(-1)n =+++…+ =-1+=-; 當(dāng)n為奇數(shù)時(shí), Tn=-+-+…+(-1)n =+++…+ =-1-=-. 綜上,Tn=- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 數(shù)列 課時(shí)作業(yè)31 數(shù)列求和 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第五 課時(shí) 作業(yè) 31 求和
鏈接地址:http://kudomayuko.com/p-6332847.html