2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 12.2古典概型教案 理 新人教A版 .DOC
《2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 12.2古典概型教案 理 新人教A版 .DOC》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 12.2古典概型教案 理 新人教A版 .DOC(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 12.2古典概型教案 理 新人教A版 xx高考會(huì)這樣考 1.考查古典概型概率公式的應(yīng)用;2.考查古典概型與事件關(guān)系及運(yùn)算的綜合題;3.與統(tǒng)計(jì)知識(shí)相結(jié)合,考查解決綜合問題的能力. 復(fù)習(xí)備考要這樣做 1.掌握解決古典概型的基本方法,列舉基本事件、隨機(jī)事件,從中找出基本事件的總個(gè)數(shù),隨機(jī)事件所含有的基本事件的個(gè)數(shù);2.復(fù)習(xí)時(shí)要加強(qiáng)與統(tǒng)計(jì)相關(guān)的綜合題的訓(xùn)練,注重理解、分析、邏輯推理能力的提升. 1. 基本事件的特點(diǎn) (1)任何兩個(gè)基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2. 古典概型 具有以下兩個(gè)特點(diǎn)的概率模型稱為古典概率模型,簡(jiǎn)稱古典概型. (1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè). (2)每個(gè)基本事件出現(xiàn)的可能性相等. 3. 如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有n個(gè),而且所有結(jié)果出現(xiàn)的可能性都相等,那么每一個(gè)基本事件的概率都是 ??;如果某個(gè)事件A包括的結(jié)果有m個(gè),那么事件A的概率P(A)= . 4. 古典概型的概率公式 P(A)=. [難點(diǎn)正本 疑點(diǎn)清源] 1. 一個(gè)試驗(yàn)是否為古典概型,在于這個(gè)試驗(yàn)是否具有古典概型的兩個(gè)特點(diǎn)——有限性和等可能性,只有同時(shí)具備這兩個(gè)特點(diǎn)的概型才是古典概型. 2. 從集合的角度去看待概率,在一次試驗(yàn)中,等可能出現(xiàn)的全部結(jié)果組成一個(gè)集合I,基本事件的個(gè)數(shù)n就是集合I的元素個(gè)數(shù),事件A是集合I的一個(gè)包含m個(gè)元素的子集. 故P(A)==. 1. 甲、乙、丙三名同學(xué)站成一排,甲站在中間的概率是__________. 答案 解析 甲共有3種站法,故站在中間的概率為. 2. 從1,2,3,4,5,6這6個(gè)數(shù)字中,任取2個(gè)數(shù)字相加,其和為偶數(shù)的概率是________. 答案 解析 從6個(gè)數(shù)中任取2個(gè)數(shù)的可能情況有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15種,其中和為偶數(shù)的情況有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共6種,所以所求的概率是. 3. 從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)為a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)為b,則b>a的概率是 ( ) A. B. C. D. 答案 D 解析 基本事件的個(gè)數(shù)有53=15,其中滿足b>a的有3種,所以b>a的概率為=. 4. 一個(gè)口袋內(nèi)裝有2個(gè)白球和3個(gè)黑球,則先摸出1個(gè)白球后放回的條件下,再摸出1個(gè)白球的概率是 ( ) A. B. C. D. 答案 C 解析 先摸出1個(gè)白球后放回,再摸出1個(gè)白球的概率,實(shí)質(zhì)上就是第二次摸到白球的概率,因?yàn)榇鼉?nèi)裝有2個(gè)白球和3個(gè)黑球,因此概率為. 5. (xx廣東)從個(gè)位數(shù)與十位數(shù)之和為奇數(shù)的兩位數(shù)中任取一個(gè),其個(gè)位數(shù)為0的概率是 ( ) A. B. C. D. 答案 D 解析 個(gè)位數(shù)與十位數(shù)之和為奇數(shù),則個(gè)位數(shù)與十位數(shù)中必有一個(gè)奇數(shù)一個(gè)偶數(shù),所以可以分兩類. (1)當(dāng)個(gè)位為奇數(shù)時(shí),有54=20(個(gè))符合條件的兩位數(shù). (2)當(dāng)個(gè)位為偶數(shù)時(shí),有55=25(個(gè))符合條件的兩位數(shù). 因此共有20+25=45(個(gè))符合條件的兩位數(shù),其中個(gè)位數(shù)為0的兩位數(shù)有5個(gè),所以所求概率為P==. 題型一 基本事件 例1 有兩顆正四面體的玩具,其四個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,下面做投擲這兩顆正四面體玩具的試驗(yàn):用(x,y)表示結(jié)果,其中x表示第1顆正四面體玩具出現(xiàn)的點(diǎn)數(shù),y表示第2顆正四面體玩具出現(xiàn)的點(diǎn)數(shù).試寫出: (1)試驗(yàn)的基本事件; (2)事件“出現(xiàn)點(diǎn)數(shù)之和大于3”; (3)事件“出現(xiàn)點(diǎn)數(shù)相等”. 思維啟迪:由于出現(xiàn)的結(jié)果有限,每次每顆只能有四種結(jié)果,且每種結(jié)果出現(xiàn)的可能性是相等的,所以是古典概型.由于試驗(yàn)次數(shù)少,故可將結(jié)果一一列出. 解 (1)這個(gè)試驗(yàn)的基本事件為 (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4). (2)事件“出現(xiàn)點(diǎn)數(shù)之和大于3”包含以下13個(gè)基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出現(xiàn)點(diǎn)數(shù)相等”包含以下4個(gè)基本事件: (1,1),(2,2),(3,3),(4,4). 探究提高 基本事件的確定可以使用列舉法和樹形圖法. 用紅、黃、藍(lán)三種不同顏色給圖中3個(gè)矩形隨機(jī)涂色,每個(gè)矩形只涂一種 顏色,求: (1)3個(gè)矩形顏色都相同的概率; (2)3個(gè)矩形顏色都不同的概率. 解 所有可能的基本事件共有27個(gè),如圖所示. (1)記“3個(gè)矩形都涂同一顏色”為事件A,由圖,知事件A的基本事件有13=3(個(gè)),故P(A)==. (2)記“3個(gè)矩形顏色都不同”為事件B,由圖,可知事件B的基本事件有23=6(個(gè)),故P(B)==. 題型二 古典概型問題 例2 有編號(hào)為A1,A2,…,A10的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù): 編號(hào) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 直徑 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47 其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品. (1)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率; (2)從一等品零件中,隨機(jī)抽取2個(gè). ①用零件的編號(hào)列出所有可能的抽取結(jié)果; ②求這2個(gè)零件直徑相等的概率. 思維啟迪:確定基本事件總數(shù),可用列舉法.確定事件所包含的基本事件數(shù),用公式求解. 解 (1)由所給數(shù)據(jù)可知,一等品零件共有6個(gè),記“從10個(gè)零件中,隨機(jī)抽取一個(gè),這個(gè)零件為一等品”為事件A,則P(A)==. (2)①一等品零件的編號(hào)為A1,A2,A3,A4,A5,A6,從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15種. ②“從一等品零件中,隨機(jī)抽取2個(gè),這2個(gè)零件直徑相等”記為事件B,則其所有可能結(jié)果有{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共6種,所以P(B)=. 探究提高 求古典概型的概率的關(guān)鍵是求試驗(yàn)的基本事件的總數(shù)和事件A包含的基本事件的個(gè)數(shù),這就需要正確列出基本事件,基本事件的表示方法有列舉法、列表法和樹形圖法,具體應(yīng)用時(shí)可根據(jù)需要靈活選擇. (xx上海)三位同學(xué)參加跳高、跳遠(yuǎn)、鉛球項(xiàng)目的比賽.若每人都選擇其中兩個(gè)項(xiàng)目,則有且僅有兩人選擇的項(xiàng)目完全相同的概率是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示). 答案 解析 三位同學(xué)每人選擇三項(xiàng)中的兩項(xiàng)有CCC=333=27(種)選法, 其中有且僅有兩人所選項(xiàng)目完全相同的有CCC=332=18(種)選法. ∴所求概率為P==. 題型三 古典概型的綜合應(yīng)用 例3 為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,測(cè)得身高情況的統(tǒng)計(jì)圖如下: (1)估計(jì)該校男生的人數(shù); (2)估計(jì)該校學(xué)生身高在170~185 cm之間的概率; (3)從樣本中身高在180~190 cm之間的男生中任選2人,求至少有1人身高在185~190 cm之間的概率. 思維啟迪:先根據(jù)統(tǒng)計(jì)圖確定樣本的男生人數(shù),身高在170~185 cm之間的人數(shù)和概率,再確定身高在180~190 cm之間的人數(shù),轉(zhuǎn)化成古典概型問題. 解 (1)樣本中男生人數(shù)為40,由分層抽樣比例為10%估計(jì)全校男生人數(shù)為400. (2)由統(tǒng)計(jì)圖知,樣本中身高在170~185 cm之間的學(xué)生有14+13+4+3+1=35(人),樣本容量為70,所以樣本中學(xué)生身高在170~185 cm之間的頻率f==0.5.故由f估計(jì)該校學(xué)生身高在170~185 cm之間的概率P=0.5. (3)樣本中身高在180~185 cm之間的男生有4人,設(shè)其編號(hào)為①②③④,樣本中身高在185~190 cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥. 從上述6人中任選2人的樹狀圖為 故從樣本中身高在180~190 cm之間的男生中任選2人的所有可能結(jié)果數(shù)為15,至少有1人身高在185~190 cm之間的可能結(jié)果數(shù)為9,因此,所求概率P==0.6. 探究提高 有關(guān)古典概型與統(tǒng)計(jì)結(jié)合的題型是高考考查概率的一個(gè)重要題型,已成為高考考查的熱點(diǎn),概率與統(tǒng)計(jì)結(jié)合題,無論是直接描述還是利用概率分布表、分布直方圖、莖葉圖等給出信息,只需要能夠從題中提煉出需要的信息,則此類問題即可解決. 一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛): 轎車A 轎車B 轎車C 舒適型 100 150 z 標(biāo)準(zhǔn)型 300 450 600 按類用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛. (1)求z的值; (2)用分層抽樣的方法在C類轎車中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車的概率; (3)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率. 解 (1)設(shè)該廠這個(gè)月共生產(chǎn)轎車n輛, 由題意得=,所以n=2 000, 則z=2 000-100-300-150-450-600=400. (2)設(shè)所抽樣本中有a輛舒適型轎車, 由題意得=,則a=2. 因此抽取的容量為5的樣本中,有2輛舒適型轎車,3輛標(biāo)準(zhǔn)型轎車.用A1,A2表示2輛舒適型轎車,用B1,B2,B3表示3輛標(biāo)準(zhǔn)型轎車,用E表示事件“在該樣本中任取2輛,其中至少有1輛舒適型轎車”,則基本事件空間包含的基本事件有 (A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10個(gè). 事件E包含的基本事件有 (A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7個(gè). 故P(E)=,即所求概率為. (3)樣本平均數(shù)=(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9. 設(shè)D表示事件“從樣本中任取一個(gè)數(shù),該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5”,則基本事件空間中有8個(gè)基本事件,事件D包含的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6個(gè),所以P(D)==,即所求概率為. 六審細(xì)節(jié)更完善 典例:(12分)一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4. (1)從袋中隨機(jī)取兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率; (2)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為n,求n- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 12.2古典概型教案 新人教A版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 12.2 古典 教案 新人
鏈接地址:http://kudomayuko.com/p-2592036.html